Divided symmetrization and quasisymmetric functions - Combinatoire, théorie des nombres
Article Dans Une Revue Selecta Mathematica Année : 2021

Divided symmetrization and quasisymmetric functions

Résumé

Motivated by a question in Schubert calculus, we study various aspects of the divided symmetrization operator, which was introduced by Postnikov in the context of volume polynomials of permutahedra. Divided symmetrization is a linear form which acts on the space of polynomials in n indeterminates of degree n−1. Our main results are related to quasisymmetric polynomials: First, we show that divided symmetrization applied to a quasisymmetric polynomial in m < n indetermi-nates has a natural interpretation. Then, that the divided symmetrization of any polynomial can be naturally computed with respect to a direct sum decomposition due to Aval-Bergeron-Bergeron, involving the ideal generated by positive degree quasisymmetric polynomials in n indeterminates. Several examples with a strong combinatorial flavor are given.
Fichier principal
Vignette du fichier
ds_july2021_selecta.pdf (383.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02274557 , version 1 (13-10-2021)

Identifiants

Citer

Philippe Nadeau, Vasu Tewari. Divided symmetrization and quasisymmetric functions. Selecta Mathematica, 2021, 27 (4), ⟨10.1007/s00029-021-00695-6⟩. ⟨hal-02274557⟩
52 Consultations
43 Téléchargements

Altmetric

Partager

More