Applied Statistical Model Checking for a Sensor Behavior Analysis - IMAG
Chapitre D'ouvrage Année : 2020

Applied Statistical Model Checking for a Sensor Behavior Analysis

Application de SMC pour l'analyse du comportement des capteurs

Salim Chehida
Abdelhakim Baouya
Saddek Bensalem
Marius Bozga

Résumé

The analysis of sensors' behavior becomes one of the essential challenges due to the growing use of these sensors for making a decision in IoT systems. The paper proposes an approach for a formal specification and analysis of such behavior starting from existing sensor traces. A model that embodies the sensor measurements over the time in the form of stochastic automata is built, then temporal properties are feed to Statistical Model Checker to simulate the learned model and to perform analysis. LTL properties are employed to predict sensors' readings in time and to check the conformity of sensed data with the sensor traces in order to detect any abnormal behavior.
Fichier principal
Vignette du fichier
PAPER47-SALIM_CHEHIDA.pdf (574.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02926099 , version 1 (09-12-2024)

Identifiants

Citer

Salim Chehida, Abdelhakim Baouya, Saddek Bensalem, Marius Bozga. Applied Statistical Model Checking for a Sensor Behavior Analysis. Martin Shepperd; Fernando Brito e Abreu; Alberto Rodrigues da Silva; Ricardo Pérez-Castillo. Quality of Information and Communications Technology. 13th International Conference, QUATIC 2020, Faro, Portugal, September 9–11, 2020, Proceedings, 1266, Springer, pp.399-411, 2020, Communications in Computer and Information Science, 978-3-030-58792-5. ⟨10.1007/978-3-030-58793-2_32⟩. ⟨hal-02926099⟩
42 Consultations
0 Téléchargements

Altmetric

Partager

More