
HAL Id: hal-00700925
https://confremo.hal.science/hal-00700925v1

Submitted on 24 May 2012 (v1), last revised 19 Jun 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sub-riemannian geometry from intrinsic viewpoint
Marius Buliga

To cite this version:
Marius Buliga. Sub-riemannian geometry from intrinsic viewpoint. École de recherche CIMPA :
Géométrie sous-riemannienne, Jan 2012, BEYROUTH, Lebanon. �hal-00700925v1�

https://confremo.hal.science/hal-00700925v1
https://hal.archives-ouvertes.fr


Sub-riemannian geometry from intrinsic viewpoint

Marius Buliga

Institute of Mathematics, Romanian Academy

P.O. BOX 1-764, RO 014700
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Abstract

Gromov proposed to extract the (differential) geometric content of a sub-riemannian space
exclusively from its Carnot-Carathéodory distance. One of the most striking features of a regular
sub-riemannian space is that it has at any point a metric tangent space with the algebraic
structure of a Carnot group, hence a homogeneous Lie group. Siebert characterizes homogeneous
Lie groups as locally compact groups admitting a contracting and continuous one-parameter
group of automorphisms. Siebert result has not a metric character.

In these notes I show that sub-riemannian geometry may be described by about 12 axioms,
without using any a priori given differential structure, but using dilation structures instead.
Dilation structures bring forth the other intrinsic ingredient, namely the dilations, thus blending
Gromov metric point of view with Siebert algebraic one.

MSC2000: 51K10, 53C17, 53C23

1 Foreword 2

2 Metric spaces, groupoids, norms 3
2.1 Normed groups and normed groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Gromov-Hausdorff distance. Metric tangent spaces . . . . . . . . . . . . . . . . . . . . 6
2.3 Curvdimension and curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Groups with dilations 10
3.1 Conical groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Carnot groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Contractible groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Dilation structures 15
4.1 Normed groupoids with dilations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Dilation structures, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1



5 Some examples of dilation structures 18
5.1 Snowflakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Nonstandard dilations in the euclidean space . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Normed groups with dilations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Length dilation structures 20
6.1 Length in metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Gamma-convergence of length functionals . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Properties of (length) dilation structures 24
7.1 Metric profiles associated with dilation structures . . . . . . . . . . . . . . . . . . . . . 24
7.2 Infinitesimal translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Topological considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.4 Tangent bundle of a dilation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.5 Differentiability with respect to dilation structures . . . . . . . . . . . . . . . . . . . . 30

8 Dilation structures on sub-riemannian manifolds 31
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1 Foreword

In these notes I show that sub-riemannian geometry may be described by about 12 axioms, without
using any a priori given differential structure. In my opinion this shows the power of the
dilation structures approach.

A geometry is not a simple object, for example euclidean geometry needs twice this number of
axioms. It should be clear that renouncing to such a basic object as a differential structure is payed
by the introduction of a number of axioms which might seem too high at the first view. It is not
so high though; just for an example, the number of axioms for the euclidean geometry decreases
dramatically once we use as basic objects the algebraic and topological structure of real numbers (or
real vector spaces).
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From Gromov viewpoint, the only intrinsic object of a sub-riemannian space is the Carnot-
Carathéodory distance. One of the most striking features of a regular sub-riemannian space is that
it has at any point a metric tangent space, which algebraically is a Carnot group. This has been
proved several times, by using the CC distance and lots of informations coming from the underlying
differential structure of the manifold. Let us compare this with the result of Siebert, which charac-
terizes homogeneous Lie groups as locally compact groups admitting a contracting and continuous
one-parameter group of automorphisms. Siebert result has not a metric character.

In the work presented in this paper we tried to argue that we need more than only the CC distance
in order to describe regular sub-riemannian manifolds, but less than the underlying differential struc-
ture: we need only dilation structures. Dilation structures bring forth the other intrinsic ingredient,
namely the dilations, which are generalizations of Siebert’ contracting group of automorphisms.

As it is maybe to be expected from a course notes paper, these notes are build from previous papers
of mine, the only new section is the one on curvdimension. I hope that the unitary presentation will
help the understanding of the subject.

Acknowledgements. These are the notes prepared for the course ”Metric spaces with dilations and
sub-riemannian geometry from intrinsic point of view”, CIMPA research school on sub-riemannian
geometry (2012). Unfortunately I have not been able to attend the school. I want to express my
thanks to the organizers for inviting me and also my excuses for not being there.

2 Metric spaces, groupoids, norms

Definition 2.1 A metric space (X, d) is a set X endowed with a distance function d : X × X →
[0,+∞). In the metric space (X, d), the distance between two points x, y ∈ X is d(x, y) ≥ 0. The
distance d satisfies the following axioms:

(i) d(x, y) = 0 if and only if x = y,

(ii) (symmetry) for any x, y ∈ X d(x, y) = d(y, x),

(iii) (triangle inequality) for any x, y, z ∈ X d(x, z) ≤ d(x, y) + d(y, z).

The ball of radius r > 0 and center x ∈ X is the set

B(x, r) = {y ∈ X : d(x, y) < r} .

Sometimes we shall use the notation Bd(x, r) for the ball of center x and radius r with respect to
the distance d, in order to emphasize the dependence on the distance d. Any metric space (X, d) is
endowed with the topology generated by balls. The notations B̄(x, r) and B̄d(x, r) are used for the
closed ball centered at x, with radius r.

A pointed metric space (X,x, d) is a metric space (X, d) with a chosen point x ∈ X.

Metric spaces have been introduced by Fréchet in the paper [Sur quelques points du calcul fonc-
tionnel, Rendic. Circ. Mat. Palermo 22 (1906), 1-74].

2.1 Normed groups and normed groupoids

Any normed vector space is a metric space. More generally, an abelian group with a norm is a metric
space; indeed, by looking at the normed vector space example we see that in order to define the
distance we need the norm function and the abelian group structure of the vector space. (Later in
this paper, he multiplication by scalars will provide us with the first example of a metric space with
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dilations). This leads us to the introduction of normed groups. Let us give, in increasing generality,
the definition of a normed group, then the definition of a normed groupoid.

Definition 2.2 A normed group (G, ρ) is a pair formed by:

- a group G, with the operation (x, y) ∈ G × G 7→ xy, inverse denoted by x ∈ G 7→ x−1 and
neutral element denoted by e,

- a norm function ρ : G→ [0,+∞), which satisfies the following axioms:

(i) ρ(x) = 0 if and only if x = e,

(ii) (symmetry) for any x ∈ G ρ(x−1) = ρ(x),

(iii) (sub-additivity) for any x, y ∈ G ρ(xy) ≤ ρ(x) + ρ(y).

Any normed group (G, ρ) can be seen as a metric space, with any of the distances

dL(x, y) = ρ(x−1y) , dR(x, y) = ρ(xy−1) .

The function dL is left-invariant, i.e. for any x, y, z ∈ G we have dL(zx, zy) = dL(x, y). Similarly dR

is right-invariant, that is for any x, y, z ∈ G we have dR(xz, yz) = dR(x, y).
Indeed, the first axiom of a distance is a consequence of the first axiom of a norm, the symmetry

axiom for distances is a consequence of the symmetry axiom of the norm and the triangle inequality
comes from the group identity

x−1z =
(

x−1y
) (

y−1z
)

(which itself is a consequence of the associativity of the group operation and of the existence of
inverse) and from the sub-additivity of the norm. The left-invariance of dL comes from the group

identity (zx)−1 (zy) = x−1y.
Groupoids are generalization of groups. A groupoid is a small category such that any arrow is

invertible. The set of arrows of a groupoid is a set with a partially defined binary operation and a
unary operation (the inverse function), which satisfy several properties. A norm is then a function
defined on the set of arrows of a groupoid, with properties similar with the ones of a norm over a
group. This is the definition which we give further.

Definition 2.3 A normed groupoid (G, ρ) is a pair formed by:

- a groupoid G, which is a set with two operations inv : G → G, m : G(2) ⊂ G ×G → G, which
satisfy a number of properties. With the notations inv(a) = a−1, m(a, b) = ab, these properties
are: for any a, b, c ∈ G

(i) if (a, b) ∈ G(2) and (b, c) ∈ G(2) then (a, bc) ∈ G(2) and (ab, c) ∈ G(2) and we have
a(bc) = (ab)c,

(ii) (a, a−1) ∈ G(2) and (a−1, a) ∈ G(2),

(iii) if (a, b) ∈ G(2) then abb−1 = a and a−1ab = b.

The set X = Ob(G) is formed by all products a−1a, a ∈ G. For any a ∈ G we let α(a) = a−1a
and ω(a) = aa−1.

- a norm function d : G→ [0,+∞) which satisfies the following axioms:

(i) d(g) = 0 if and only if g ∈ Ob(G),
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(ii) (symmetry) for any g ∈ G, d(g−1) = d(g),

(iii) (sub-additivity) for any (g, h) ∈ G(2), d(gh) ≤ d(g) + d(h),

If Ob(G) is a singleton then G is just a group and the previous definition corresponds exactly to
the definition 2.2 of a normed group. As in the case of normed groups, normed groupoids induce
metric spaces too.

Proposition 2.4 Let (G, d) be a normed groupoid and x ∈ Ob(G). Then the space (α−1(x), dx) is
a metric space, with the distance dx defined by: for any g, h ∈ G with α(g) = α(h) = x we have
dx(g, h) = d(gh−1).

Therefore a normed groupoid can be seen as a disjoint union of metric spaces

G =
⋃

x∈Ob(G)

α−1(x) , (1)

with the property that right translations in the groupoid are isometries, that is: for any u ∈ G the
transformation

Ru : α−1 (ω(u)) → α−1 (α(u)) , Ru(g) = gu

has the property for any g, h ∈ α−1 (ω(u))

dω(u)(g, h) = dα(u)(Ru(g), Ru(h)) .

Proof. We begin by noticing that if α(g) = α(h) then (g, h−1) ∈ G(2), therefore the expression
gh−1 makes sense. The rest of the proof of the first part of the proposition is identical with the proof
of the previous proposition.

For the proof of the second part of the proposition remark first that Ru is well defined and that

Ru(g) (Ru(h))−1 = gh−1 .

Then we have:
dα(u)(Ru(g), Ru(h)) = d

(

Ru(g) (Ru(h))
−1
)

=

= d(gh−1) = dω(u)(g, h) .

�

Therefore normed groupoids provide examples of (disjoint unions of) metric spaces. Are there
metric spaces more general than these? No, in fact we have the following.

Proposition 2.5 Any metric space can be constructed from a normed groupoid, as in proposition 2.4.
Precisely, let (X, d) be a metric space and consider the trivial groupoid G = X×X with multiplication

(x, y)(y, z) = (x, z)

and inverse (x, y)−1 = (y, x). Then (G, d) is a normed groupoid and moreover any component of the
decomposition (1) of G is isometric with (X, d).

Conversely, if G = X ×X is the trivial groupoid associated to the set X and d is a norm on G
then (X, d) is a metric space.
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Proof. We begin by noticing that α(x, y) = (y, y), ω(x, y) = (x, x), thereforeOb(G) = {(x, x) : x ∈ X}
can be identified with X by the bijection (x, x) 7→ x. Moreover, for any x ∈ X we have

α−1((x, x)) = X × {x} .

Because d : X × X → [0,+∞) and G = X × X it follows that d : G → [0,+∞). We have
to check the properties of a norm over a groupoid. But these are straightforward. The statement
(i) (d(x, y) = 0 if and only if (x, y) ∈ Ob(G)) is equivalent with d(x, y) = 0 if and only if x = y.
The symmetry condition (ii) is just the symmetry of the distance: d(x, y) = d(y, x). Finally the
sub-additivity of d seen as defined on the groupoid G is equivalent with the triangle inequality:

d((x, y)(y, z)) = d(x, z) ≤ d(x, y) + d(y, z) .

In conclusion (G, d) is a normed groupoid if and only if (X, d) is a metric space.
For any x ∈ X the distance d(x,x) on the space α−1((x, x)) has the expression:

d(x,x)((u, x), (v, x)) = d((u, x)(v, x)−1) = d((u, x)(x, v)) = d(u, v)

therefore the metric space (α−1((x, x)), d(x,x)) is isometric with (X, d) by the isometry (u, x) 7→ u,
for any u ∈ X . �

In conclusion normed groups give particular examples of metric spaces and metric spaces are
particular examples of normed groupoids. For this reason normed groups make good examples of
metric spaces. It is also interesting to extend the theory of metric spaces to normed groupoids (other
than trivial normed groupoids). This was started in [12].

2.2 Gromov-Hausdorff distance. Metric tangent spaces

Let us denote by CMS the set of isometry classes of pointed compact metric spaces. The distance on
this set is the Gromov distance between (isometry classes of) pointed metric spaces and the topology
is induced by this distance.

We may introduce the Gromov-Haudorff distance by way of (cartographic like) maps.

Definition 2.6 Let ρ ⊂ X × Y be a relation which represents a map of dom ρ ⊂ (X, d) into
im ρ ⊂ (Y,D). To this map are associated three quantities: accuracy, precision and resolution.

The accuracy of the map ρ is defined by:

acc(ρ) = sup {| D(y1, y2) − d(x1, x2) | : (x1, y1) ∈ ρ , (x2, y2) ∈ ρ} (2)

The resolution of ρ at y ∈ im ρ is

res(ρ)(y) = sup {d(x1, x2) : (x1, y) ∈ ρ , (x2, y) ∈ ρ} (3)

and the resolution of ρ is given by:

res(ρ) = sup {res(ρ)(y) : y ∈ im ρ} (4)

The precision of ρ at x ∈ dom ρ is

prec(ρ)(x) = sup {D(y1, y2) : (x, y1) ∈ ρ , (x, y2) ∈ ρ} (5)

and the precision of ρ is given by:

prec(ρ) = sup {prec(ρ)(x) : x ∈ dom ρ} (6)
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We may need to perform also a ”cartographic generalization”, starting from a relation ρ, with
domain M = dom(ρ) which is ε-dense in (X, d), then we perform a ” cartographic generalization”.
The result is a relation ρ̄ as in the following definition.

Definition 2.7 A subset M ⊂ X of a metric space (X, d) is ε-dense in X if for any u ∈ X there is
x ∈M such that d(x, u) ≤ ε.

Let ρ ⊂ X × Y be a relation such that dom ρ is ε-dense in (X, d) and im ρ is µ-dense in (Y,D).
We define then ρ̄ ⊂ X×Y by: (x, y) ∈ ρ̄ if there is (x′, y′) ∈ ρ such that d(x, x′) ≤ ε and D(y, y′) ≤ µ.

If ρ is a relation as described in definition 2.7 then accuracy acc(ρ), ε and µ control the precision
prec(ρ) and resolution res(ρ). Moreover, the accuracy, precision and resolution of ρ̄ are controlled by
those of ρ and ε, µ, as well. This is explained in the next proposition.

Proposition 2.8 Let ρ and ρ̄ be as described in definition 2.7. Then:

(a) res(ρ) ≤ acc(ρ),

(b) prec(ρ) ≤ acc(ρ),

(c) res(ρ) + 2ε ≤ res(ρ̄) ≤ acc(ρ) + 2(ε+ µ),

(d) prec(ρ) + 2µ ≤ prec(ρ̄) ≤ acc(ρ) + 2(ε+ µ),

(e) | acc(ρ̄) − acc(ρ) |≤ 2(ε+ µ).

Proof. Remark that (a), (b) are immediate consequences of definition 2.6 and that (c) and (d) must
have identical proofs, just by switching ε with µ and X with Y respectively. I shall prove therefore
(c) and (e).

For proving (c), consider y ∈ Y . By definition of ρ̄ we write

{x ∈ X : (x, y) ∈ ρ̄} =
⋃

(x′,y′)∈ρ,y′∈B̄(y,µ)

B̄(x′, ε)

Therefore we get
res(ρ̄)(y) ≥ 2ε+ sup

{

res(ρ)(y′) : y′ ∈ im(ρ) ∩ B̄(y, µ)
}

By taking the supremum over all y ∈ Y we obtain the inequality

res(ρ) + 2ε ≤ res(ρ̄)

For the other inequality, let us consider (x1, y), (x2, y) ∈ ρ̄ and (x′1, y
′
1), (x

′
2, y

′
2) ∈ ρ such that

d(x1, x
′
1) ≤ ε, d(x2, x

′
2) ≤ ε,D(y′1, y) ≤ µ,D(y′2, y) ≤ µ. Then:

d(x1, x2) ≤ 2ε+ d(x′1, x
′
2) ≤ 2ε+ acc(ρ) + d(y′1, y

′
2) ≤ 2(ε+ µ) + acc(ρ)

Take now a supremum and arrive to the desired inequality.
For the proof of (e) let us consider for i = 1, 2 (xi, yi) ∈ ρ̄, (x′i, y

′
i) ∈ ρ such that d(xi, x

′
i) ≤

ε,D(yi, y
′
i) ≤ µ. It is then enough to take absolute values and transform the following equality

d(x1, x2) −D(y1, y2) = d(x1, x2) − d(x′1, x
′
2) + d(x′1, x

′
2) −D(y′1, y

′
2)+

+D(y′1, y
′
2) −D(y1, y2)

into well chosen, but straightforward, inequalities. �

We have all the tools needed to define the Gromov-Hausdorff distance as the optimal lower bound
for the accuracy of maps of (X, d) into (Y,D).
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Definition 2.9 Let (X, d), (Y,D), be a pair of metric spaces and µ > 0. We shall say that µ is
admissible if there is a relation ρ ⊂ X × Y such that dom ρ = X, im ρ = Y , and acc(ρ) ≤ µ. The
Gromov-Hausdorff distance between (X, d) and (Y,D) is the infimum of admissible numbers µ.

This is a true distance (between isometry classes of pointed metric spaces) in the case (X, d) and
(Y,D) are compact.

To any locally compact metric space we can associate a metric profile [10, 11]. This metric profile is
a way of organizing the information given by the distance function in order to get an understanding of
the local behaviour of the distance around a point of the space. We need to consider local compactness
in order to compact small balls in the next definition.

Definition 2.10 The metric profile associated to the locally metric space (M,d) is the assignment
(for small enough ε > 0)

(ε > 0, x ∈M) 7→ P
m(ε, x) =

[

B̄(x, 1),
1

ε
d, x

]

∈ CMS

We may see the metric profile as a bundle of curves in CMS over the metric space. The metric
profile is not any curve in CMS. Indeed, for any ε, b > 0, sufficiently small, we have

P
m(εb, x) = P

m
db

(ε, x)

where db = (1/b)d and Pm
db

(ε, x) = [B̄(x, 1), 1
εdb, x].

These curves give interesting local and infinitesimal information about the metric space. For
example, what kind of metric space has constant metric profile with respect to one of its points?

Definition 2.11 A metric cone (X, d, x) is a locally compact metric space (X, d), with a marked
point x ∈ X such that for any a, b ∈ (0, 1] we have

P
m(a, x) = P

m(b, x)

Metric cones are self-similar, in the sense that they have dilations.

Definition 2.12 Let (X, d, x) be a metric cone. For any ε ∈ (0, 1] a dilation is a function δx
ε :

B̄(x, 1) → B̄(x, ε) such that

• δx
ε (x) = x,

• for any u, v ∈ X we have
d (δx

ε (u), δx
ε (v)) = ε d(u, v)

The existence of dilations for metric cones comes from the definition 2.11. Indeed, dilations are
just isometries from (B̄(x, 1), d, x) to (B̄, 1

ad, x).
Metric cones are good candidates for being tangent spaces in the metric sense. This is related to

the next natural question: is the metric profile Pm(ε, x) converging when ε goes to 0?

Definition 2.13 A (locally compact) metric space (M,d) admits a (metric) tangent space in x ∈M
if the associated metric profile ε 7→ Pm(ε, x) admits a prolongation by continuity in ε = 0, i.e if the
following limit exists:

[TxM,dx, x] = lim
ε→0

P
m(ε, x) (7)

The connection between metric cones, tangent spaces and metric profiles in the abstract sense is
made by the following proposition.

Proposition 2.14 Metric tangent spaces are metric cones.
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Proof. A tangent space [V, dv, v] exists if and only if we have the limit from the relation (7). In
this case there exists a prolongation by continuity to ε = 0 of the metric profile Pm(·, x). For any
a ∈ (0, 1] we have

[

B̄(x, 1),
1

a
dx, x

]

= lim
ε→0

P
m(aε, x)

Therefore
[

B̄(x, 1),
1

a
dx, x

]

= [TxM,dx, x]

�

We shall need further a notion of an abstract metric profile.

Definition 2.15 An abstract metric profile is a curve P : [0, a] → CMS such that

(a) it is continuous at 0,

(b) for any b ∈ [0, a] and ε ∈ (0, 1] we have

dGH(P(εb),Pm
db

(ε, xb)) = O(ε)

The function O(ε) may change with b. We used the notations

P(b) = [B̄(x, 1), db, xb] and P
m
db

(ε, x) =

[

B̄(x, 1),
1

ε
db, xb

]

2.3 Curvdimension and curvature

In the case of a riemannian manifold (X, g), with smooth enough (typically C1) metric g, the tangent
metric spaces exist for any point of the manifold. Ideed, the tangent metric space [TxX, d

x, x] is the
isometry class of a small neighbourhood of the origin of the tangent space (in differential geometric
sense) TxX , with dx being the euclidean distange induced by the norm given by gx. Moreover, we
have the following description of the sectional curvature.

Proposition 2.16 Let (X, d) be a C4 smooth riemannian manifold with d the length distance induced
by the riemannian metric g. Suppose that for a point x ∈ X the sectional curvature is bounded in the
sense that for any linearly independent u, v ∈ TxX we have | Kx(u, v) |≤ C. Then for any sufficiently
small ε > 0 we have

1

ε2
dGH(Pm(ε, x), [TxX, d

x, x]) ≤
1

3
C + O(ε) (8)

Proof. This is well known, in another form. Indeed, for small enough ε, consider the geodesic
exponential map which associates to any u ∈ W ⊂ TxX (in a neighbourhood W of the origin which
is independent of ε) the point expx εu. Define now the distance

dx
ε (u, v) =

1

ε
d(expx εu, expx εv)

We can choose the neighbourhood W to be the unit ball with respect to the distance dx in order to
get the following estimate:

sup {| dx
ε (u, v) − dx(u, v) | : u, v ∈ W} ≥ dGH(Pm(ε, x), [W,dx, 0])

9



where dx(u, v) = ‖u − v‖x. In the given regularity settings, we shall use the following expansion of
dx

ε : if u, v are linearly independent then

dx
ε (u, v) = dx(u, v) −

1

6
ε2Kx(u, v)

‖u‖2
x‖v‖

2
x − 〈u, v〉2x

dx(u, v)
+ ε2O(ε)

where K is the sectional curvature of the metric g. (If u, v are linearly dependent then dx
ε (u, v) =

dx(u, v).) From here we easily obtain that

1

ε2
dGH(Pm(ε, x), [TxX, d

x, x]) ≤
1

3
sup {| Kx(u, v) | : u, v ∈ W lin. indep.} + O(ε)

which ends the proof. �

This proposition makes us define the ”curvdimension” and ”curvature” of an (abstract) metric
profile.

Definition 2.17 Let P be an abstract metric profile. The curvdimension of this abstract metric
profile is

curvdimP = sup

({

α > 0 : lim
ε→0

1

εα
dGH(P(ε),P(0)) = 0

}

∪ {0}

)

(9)

and, in the case that the curvdimension equals β > 0 then the β-curvature of P is the number M > 0
such that

lim
ε→0

logε

(

1

M
dGH(P(ε),P(0))

)

= β (10)

In case P is the metric profile of a point x ∈ X in a metric space (X, d) then the curvdimension at x
and curvature at x are the curvimension, respectively curvature, of the metric profile of x.

It follows that non-flat riemannian (smooth enough) spaces have curvdimension 2. Also, any
metric cone has curvdimension equal to 0 (meaning ”all metric cones are flat objects”). In particular,
finite dimensional normed vector spaces are flat (as they should be).

3 Groups with dilations

We shall see that for a dilation structure (or ”dilatation structure”, or ”metric space with dilations”)
the metric tangent spaces have the structure of a normed local group with dilations. The notion has
been introduced in [9], [5]; we describe it further.

We shall work with local groups. We start with the following setting (slightly non standard): G
is a topological group endowed with an uniformity such that the operation is uniformly continuous.

We introduce first the double of G, as the group G(2) = G×G with operation

(x, u)(y, v) = (xy, y−1uyv) .

The operation on the group G, seen as the function

op : G(2) → G , op(x, y) = xy ,

is a group morphism. Also the inclusions:

i′ : G→ G(2) , i′(x) = (x, e)

i” : G→ G(2) , i”(x) = (x, x−1)

10



are group morphisms.
An uniform group is a group G such that left translations are uniformly continuous functions

and the left action of G on itself is uniformly continuous too. In order to precisely formulate this
we shall need two uniformities: one on G and another on G × G. These uniformities should be
compatible, which is achieved by saying that i′, i” are uniformly continuous. The uniformity of the
group operation is achieved by saying that the op morphism is uniformly continuous.

Definition 3.1 1. G is an uniform group if we have two uniformity structures, on G and G2,
such that op, i′, i” are uniformly continuous.

2. A local action of a uniform group G on a uniform pointed space (X,x0) is a function φ ∈ W ∈

V(e) 7→ φ̂ : Uφ ∈ V(x0) → Vφ ∈ V(x0) such that:

(a) the map (φ, x) 7→ φ̂(x) is uniformly continuous from G ×X (with product uniformity) to
X,

(b) for any φ, ψ ∈ G there is D ∈ V(x0) such that for any x ∈ D ˆφψ−1(x) and φ̂(ψ̂−1(x))

make sense and ˆφψ−1(x) = φ̂(ψ̂−1(x)).

3. Finally, a local group is an uniform space G with an operation defined in a neighbourhood of
(e, e) ⊂ G×G which satisfies the uniform group axioms locally.

Remark that a local group acts locally at left (and also by conjugation) on itself.
Let Γ be a topological commutative group, endowed with a continuous morphism | · |: Γ →

(0,+∞). For example Γ could be (0,+∞) with the operation of multiplication of positive real
numbers and the said morphism could be the identity. Or Γ could be the set of complex numbers
different from 0, with the operation of multiplication of complex numbers and morphism taken to be
the modulus function. Also, Γ could be the set of integers with the operation of addition and the
morphism could be the exponential function. Many other possibilities exist (like a product between
a finite commutative group with one of the examples given before).

It is useful further to just think that Γ is like in the first example, because in these notes we are not
going to use the structure of Γ in order to put more geometrical objects on the metric space (like we
do, for example, in the paper [M. Buliga, Braided spaces with dilations and sub-riemannian symmetric
spaces. in: Geometry. Exploratory Workshop on Differential Geometry and its Applications, eds. D.
Andrica, S. Moroianu, Cluj-Napoca 2011, 21-35], arXiv:1005.5031).

The elements of Γ will be denoted with small greek letters, like ε, µ, .... By covention, whenever
we write ”ε→ 0”, we really mean ”| ε |→ 0”. Also ”O(ε)” means ”O(| ε |)”, and so on.

Definition 3.2 A local group with dilations (G, δ) is a local group G with a local action of Γ (denoted
by δ), on G such that

H0. the limit lim
ε→0

δεx = e exists and is uniform with respect to x in a compact neighbourhood of the

identity e.

H1. the limit
β(x, y) = lim

ε→0
δ−1
ε ((δεx)(δεy))

is well defined in a compact neighbourhood of e and the limit is uniform.

H2. the following relation holds
lim
ε→0

δ−1
ε

(

(δεx)
−1
)

= x−1

where the limit from the left hand side exists in a neighbourhood of e and is uniform with respect
to x.

11



Definition 3.3 A normed local group with dilations (G, δ, ‖ · ‖) is a local group with dilations (G, δ)
endowed with a continuous norm function ‖ · ‖ : G → R which satisfies (locally, in a neighbourhood
of the neutral element e) the properties:

(a) the limit lim
ε→0

1

ν(ε)
‖δεx‖ = ‖x‖N exists, is uniform with respect to x in compact set,

(b) if ‖x‖N = 0 then x = e.

In a normed local group with dilations we have a natural left invariant (locally defined) distance
given by

d(x, y) = ‖x−1y‖ . (11)

In a (local) group with dilations (G, δ) we define dilations based in any point x ∈ G by

δx
εu = xδε(x

−1u). (12)

3.1 Conical groups

Definition 3.4 A normed conical group N is a normed group with dilations such that for any ε ∈ Γ
the dilation δε is a group morphism and such that for any ε > 0 ‖δεx‖ = ν(ε)‖x‖.

A conical group is the infinitesimal version of a group with dilations ([5] proposition 2).

Proposition 3.5 Under the hypotheses H0, H1, H2 (G, β, δ, ‖ · ‖N) is a local normed conical group,
with operation β, dilations δ and homogeneous norm ‖ · ‖N .

Proof. All the uniformity assumptions allow us to change at will the order of taking limits. We
shall not insist on this further and we shall concentrate on the algebraic aspects.

We have to prove the associativity, existence of neutral element, existence of inverse and the
property of being conical.

For the associativity β(x, β(y, z)) = β(β(x, y), z) we compute:

β(x, β(y, z)) = lim
ε→0,η→0

δ−1
ε

{

(δεx)δε/η ((δηy)(δηz))
}

.

We take ε = η and we get

β(x, β(y, z)) = lim
ε→0

{(δεx)(δεy)(δεz)} .

In the same way:

β(β(x, y), z) = lim
ε→0,η→0

δ−1
ε

{

(δε/ηx) ((δηx)(δηy)) (δεz)
}

.

and again taking ε = η we obtain

β(β(x, y), z) = lim
ε→0

{(δεx)(δεy)(δεz)} = β(x, β(y, z)) .

The neutral element is e, from H0 (first part): β(x, e) = β(e, x) = x. The inverse of x is x−1, by a
similar argument:

β(x, x−1) = lim
ε→0,η→0

δ−1
ε

{

(δεx)
(

δε/η(δηx)
−1
)}

,
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and taking ε = η we obtain

β(x, x−1) = lim
ε→0

δ−1
ε

(

(δεx)(δεx)
−1
)

= lim
ε→0

δ−1
ε (e) = e .

Finally, β has the property:
β(δηx, δηy) = δηβ(x, y) ,

which comes from the definition of β and commutativity of multiplication in (0,+∞). This proves
that (G, β, δ) is conical. �

3.2 Carnot groups

Carnot groups appear in sub-riemannian geometry as models of tangent spaces, [3], [22], [28]. In
particular such groups can be endowed with a structure of sub-riemannian manifold.

Definition 3.6 A Carnot (or stratified homogeneous) group is a pair (N,V1) consisting of a real
connected simply connected group N with a distinguished subspace V1 of the Lie algebra Lie(N), such
that the following direct sum decomposition occurs:

n =

m
∑

i=1

Vi , Vi+1 = [V1, Vi]

The number m is the step of the group. The number Q =

m
∑

i=1

i dimVi is called the homogeneous

dimension of the group.

Because the group is nilpotent and simply connected, the exponential mapping is a diffeomor-
phism. We shall identify the group with the algebra, if is not locally otherwise stated.

The structure that we obtain is a set N endowed with a Lie bracket and a group multiplication
operation, obtained by the Baker-Campbell-Hausdorff formula. Remark that the group operation is
polynomial, because the Baker-Campbell-Hausdorff formula contains only a finite number of terms,
due to the fact that the Lie bracket is nilpotent.

Any Carnot group admits a one-parameter family of dilations. For any ε > 0, the associated
dilation is:

x =

m
∑

i=1

xi 7→ δεx =

m
∑

i=1

εixi

Any such dilation is a group morphism and a Lie algebra morphism.
In a Carnot group N let us choose an euclidean norm ‖ · ‖ on V1. We shall endow the group

N with a structure of a sub-riemannian manifold. For this take the distribution obtained from left
translates of the space V1. The metric on that distribution is obtained by left translation of the inner
product restricted to V1.

Because V1 generates (the algebra) N then any element x ∈ N can be written as a product of
elements from V1, in a controlled way, described in the following useful lemma (slight reformulation
of Lemma 1.40, Folland, Stein [19]).

Lemma 3.7 Let N be a Carnot group and X1, ..., Xp an orthonormal basis for V1. Then there is a
a natural number M and a function g : {1, ...,M} → {1, ..., p} such that any element x ∈ N can be
written as:

x =
M
∏

i=1

exp(tiXg(i)) (13)
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Moreover, if x is sufficiently close (in Euclidean norm) to 0 then each ti can be chosen such that
| ti |≤ C‖x‖1/m

As a consequence we get:

Corollary 3.8 The Carnot-Carathéodory distance

d(x, y) = inf

{∫ 1

0

‖c−1ċ‖ dt : c(0) = x, c(1) = y,

c−1(t)ċ(t) ∈ V1 for a.e. t ∈ [0, 1]
}

is finite for any two x, y ∈ N . The distance is obviously left invariant, thus it induces a norm on N .

The Carnot-Carathéodory distance induces a homogeneous norm on the Carnot group N by the
formula: ‖x‖ = d(0, x). From the invariance of the distance with respect to left translations we get:
for any x, y ∈ N

‖x−1y‖ = d(x, y)

For any x ∈ N and ε > 0 we define the dilation δx
ε y = xδε(x

−1y). Then (N, d, δ) is a dilation
structure, according to theorem 5.1.

3.3 Contractible groups

Definition 3.9 A contractible group is a pair (G,α), where G is a topological group with neutral
element denoted by e, and α ∈ Aut(G) is an automorphism of G such that:

- α is continuous, with continuous inverse,

- for any x ∈ G we have the limit lim
n→∞

αn(x) = e.

For a contractible group (G,α), the automorphism α is compactly contractive (Lemma 1.4 (iv)
[29]), that is: for each compact set K ⊂ G and open set U ⊂ G, with e ∈ U , there is N(K,U) ∈ N

such that for any x ∈ K and n ∈ N, n ≥ N(K,U), we have αn(x) ∈ U .
If G is locally compact then α compactly contractive is equivalent with: each identity neighbour-

hood of G contains an α-invariant neighbourhood. Further on we shall assume without mentioning
that all groups are locally compact.

Any conical group can be seen as a contractible group. Indeed, it suffices to associate to a conical
group (G, δ) the contractible group (G, δε), for a fixed ε ∈ Γ with ν(ε) < 1.

Conversely, to any contractible group (G,α) we may associate the conical group (G, δ), with

Γ =

{

1

2n
: n ∈ N

}

and for any n ∈ N and x ∈ G

δ 1
2n
x = αn(x) .

(Finally, a local conical group has only locally the structure of a contractible group.)
The structure of contractible groups is known in some detail, due to Siebert [29], Wang [38],

Glöckner and Willis [21], Glöckner [20] and references therein.
For this paper the following results are of interest. We begin with the definition of a contracting

automorphism group [29], definition 5.1.

14



Definition 3.10 Let G be a locally compact group. An automorphism group on G is a family T =
(τt)t>0 in Aut(G), such that τt τs = τts for all t, s > 0.

The contraction group of T is defined by

C(T ) =
{

x ∈ G : lim
t→0

τt(x) = e
}

.

The automorphism group T is contractive if C(T ) = G.

It is obvious that a contractive automorphism group T induces on G a structure of conical group.
Conversely, any conical group with Γ = (0,+∞) has an associated contractive automorphism group
(the group of dilations based at the neutral element).

Further is proposition 5.4 [29].

Proposition 3.11 For a locally compact group G the following assertions are equivalent:

(i) G admits a contractive automorphism group;

(ii) G is a simply connected Lie group whose Lie algebra admits a positive graduation.

4 Dilation structures

In this paper I use the denomination ”dilation structures”, compared with older papers, where the
name ”dilatation structures” was used. Another name which could be used is ”metric space with
dilations”.

We shall use here a slightly particular version of dilation structures. For the general definition
of a dilation structure see [5] (the general definition applies for dilation structures over ultrametric
spaces as well).

4.1 Normed groupoids with dilations

Notions of convergence. Any norm d on a groupoid G induces three notions of convergence on
the set of arrows G.

Definition 4.1 A net of arrows (aε) simply converges to the arrow a ∈ G (we write aε → a) if:

(i) for any ε ∈ I there are elements gε, hε ∈ G such that hεaεgε = a,

(ii) we have lim
ε∈I

d(gε) = 0 and lim
ε∈I

d(hε) = 0.

A net of arrows (aε) left-converges to the arrow a ∈ G (we write aε
L
→ a) if for all i ∈ I we

have (a−1
ε , a) ∈ G(2) and moreover lim

ε∈I
d(a−1

ε a) = 0.

A net of arrows (aε) right-converges to the arrow a ∈ G (we write aε
R
→ a) if for all i ∈ I we

have (aε, a
−1) ∈ G(2) and moreover lim

ε∈I
d(aεa

−1) = 0.

It is clear that if aε
L
→ a or aε

R
→ a then aε → a.

Right-convergence of aε to a is just convergence of aε to a in the distance dα(a), that is lim
ε∈I

dα(a)(aε, a) =

0.
Left-convergence of aε to a is just convergence of a−1

ε to a−1 in the distance dω(a), that is

lim
ε∈I

dω(a)(a
−1
ε , a−1) = 0.
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Proposition 4.2 Let G be a groupoid with a norm d.

(i) If aε
L
→ a and aε

L
→ b then a = b. If aε

R
→ a and aε

R
→ b then a = b.

(ii) The following are equivalent:

1. G is a Hausdorff topological groupoid with respect to the topology induced by the simple
convergence,

2. d is a separable norm,

3. for any net (aε), if aε → a and aε → b then a = b.

4. for any net (aε), if aε
R
→ a and aε

L
→ b then a = b.

Proof. (i) We prove only the first part of the conclusion. We can write b−1a = b−1aεa
−1
ε a, therefore

d(b−1a) ≤ d(b−1aε) + d(a−1
ε a)

The right hand side of this inequality is arbitrarily small, so d(b−1a) = 0, which implies a = b.
(ii) Remark that the structure maps are continuous with respect to the topology induced by the

simple convergence. We need only to prove the uniqueness of limits.
3. ⇒ 4. is trivial. In order to prove that 4.⇒ 3., consider an arbitrary net (aε) such that aε → a

and aε → b. This means that there exist nets (gε), (g
′
ε), (hε), (h

′
ε) such that hεaεgε = a, h′εaεg

′
ε = b

and lim
i∈I

(d(gε) + d(g′ε) + d(hε) + d(h′ε)) = 0. Let g”ε = g−1
ε g′ε and h”ε = h′εh

−1
ε . We have then

b = h”εag”ε and lim
i∈I

(d(g”ε) + d(h”ε)) = 0. Then h”εa
L
→ b and h”εa

R
→ a. We deduce that a = b.

1.⇔ 3. is trivial. So is 3. ⇒ 2. We finish the proof by showing that 2. ⇒ 3. By a reasoning made
previously, it is enough to prove that: if b = hεagε and lim

i∈I
(d(gε) + d(hε)) = 0 then a = b. Because d

is separable it follows that α(a) = α(b) and ω(a) = ω(b). We have then a−1b = a−1hεagε, therefore

d(a−1b) ≤ d(a−1hεa) + d(gε)

The norm d induces a left invariant distance on the vertex group of all arrows g such that α(g) =
ω(g) = α(a). This distance is obviously continuous with respect to the simple convergence in the
group. The net a−1hεa simply converges to α(a) by the continuity of the multiplication (indeed, hε

simply converges to α(a)). Therefore lim
i∈I

d(a−1hεa) = 0. It follows that d(a−1b) is arbitrarily small,

therefore a = b. �

By adapting the definition of a normed group with dilations to a normed groupoid with dilations,
we get the following structure.

Definition 4.3 A dilation of a separated normed groupoid (G, d) is a map assigning to any
ε ∈ Γ a transformation δε : dom(ε) → im(ε) which satisfies the following:

A1. For any ε ∈ Γ αδε = α. Moreover ε ∈ Γ 7→ δε is an action of Γ on G, that is for any ε, µ ∈ Γ
we have δεδµ = δεµ, (δε)

−1
= δε−1 and δe = id.

A2. For any x ∈ Ob(G) and any ε ∈ Γ we have δε(x) = x. Moreover the transformation δε contracts
dom(ε) to X = Ob(G) uniformly on bounded sets, which means that the net d δε converges to
the constant function 0, uniformly on bounded sets.
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A3. There is a function d̄ : G×α G ∩ U2 → R which is the limit

lim
ε→0

1

| ε |
d dif(δεg, δεh) = d̃0(g, h)

uniformly on bounded sets in the sense of definition 4.1. Moreover the convergence with respect
to d̄ is the same as the convergence with respect to d̃ and in particular d̃0(g, h) = 0 implies
g = h.

A4weak. There is a dilation δ̄ of the normed groupoid (G×α G, d̃0) such that for any ε ∈ Γ the transfor-
mation δ̃µ,ε converges uniformly on bounded sets to δ̄ε.

The domains and codomains of a dilation of (G, d) satisfy the following Axiom A0:

(i) for any ε ∈ Γ Ob(G) = X ⊂ dom(ε) and dom(ε) = dom(ε)−1,

(ii) for any bounded set K ⊂ Ob(G) there are 1 < A < B such that for any ε ∈ Γ, | ε |≤ 1:

d−1(| ε |) ∩ α−1(K) ⊂ δε
(

d−1(A) ∩ α−1(K)
)

⊂ dom(ε−1) ∩ α−1(K) ⊂

⊂ δε
(

d−1(B) ∩ α−1(K)
)

⊂ δε
(

dom(ε) ∩ α−1(K)
)

(14)

(iii) for any bounded set K ⊂ Ob(G) there are R > 0 and ε0 ∈ (0, 1] such that for any ε ∈ Γ,
| ε |≤ ε0 and any g, h ∈| d−1(R) ∩ α−1(K) we have:

dif(δεg, δεh) ∈ dom(ε−1) (15)

4.2 Dilation structures, definition

Applied to the trivial normed groupoid associated to a metric space, this gives:

Definition 4.4 Let (X, d) be a complete metric space such that for any x ∈ X the closed ball B̄(x, 3)
is compact. A dilation structure (X, d, δ) over (X, d) is the assignment to any x ∈ X and ε ∈
(0,+∞) of a invertible homeomorphism, defined as: if ε ∈ (0, 1] then δx

ε : U(x) → Vε(x), else
δx
ε : Wε(x) → U(x), such that the following axioms are satisfied:

A0. For any x ∈ X the sets U(x), Vε(x),Wε(x) are open neighbourhoods of x. There are numbers
1 < A < B such that for any x ∈ X and any ε ∈ (0, 1) we have the following string of inclusions:

Bd(x, ε) ⊂ δx
εBd(x,A) ⊂ Vε(x) ⊂Wε−1 (x) ⊂ δx

εBd(x,B)

Moreover for any compact set K ⊂ X there are R = R(K) > 0 and ε0 = ε(K) ∈ (0, 1) such
that for all u, v ∈ B̄d(x,R) and all ε ∈ (0, ε0), we have

δx
ε v ∈Wε−1 (δx

εu) .

A1. We have δx
εx = x for any point x. We also have δx

1 = id for any x ∈ X. Let us define the
topological space

domδ = {(ε, x, y) ∈ (0,+∞) ×X ×X : if ε ≤ 1 then y ∈ U(x) ,

else y ∈Wε(x)}

with the topology inherited from (0,+∞)×X×X endowed with the product topology. Consider
also Cl(domδ), the closure of domδ in [0,+∞)×X ×X. The function δ : domδ → X defined
by δ(ε, x, y) = δx

ε y is continuous. Moreover, it can be continuously extended to the set Cl(domδ)
and we have

lim
ε→0

δx
ε y = x
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A2. For any x,∈ X, ε, µ ∈ (0,+∞) and u ∈ U(x) we have the equality:

δx
ε δ

x
µu = δx

εµu

whenever one of the sides are well defined.

A3. For any x there is a distance function (u, v) 7→ dx(u, v), defined for any u, v in the closed ball
(in distance d) B̄(x,A), such that

lim
ε→0

sup

{

|
1

ε
d(δx

ε u, δ
x
ε v) − dx(u, v) | : u, v ∈ B̄d(x,A)

}

= 0

uniformly with respect to x in compact set.

The dilation structure is strong if it satisfies the following supplementary condition:

A4. Let us define ∆x
ε (u, v) = δ

δx
ε u

ε−1 δ
x
ε v. Then we have the limit

lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

uniformly with respect to x, u, v in compact set.

We shall use many times from now the words ”sufficiently close”. This deserves a definition.

Definition 4.5 Let (X, d, δ) be a strong dilation structure. We say that a property

P(x1, x2, x3, ...)

is true for x1, x2, x3, ... sufficiently close if for any compact, non empty set K ⊂ X, there is a
positive constant C(K) > 0 such that P(x1, x2, x3, ...) is true for any x1, x2, x3, ... ∈ K with d(xi, xj) ≤
C(K).

5 Some examples of dilation structures

5.1 Snowflakes

The next example is a snowflake variation of the euclidean case: X = Rn and for any a ∈ (0, 1] take

da(x, y) = ‖x− y‖α , δx
ε y = x+ ε

1
a (y − x) .

We leave to the reader to verify the axioms.
More general, if (X, d, δ) is a dilation structure then (X, da, δ(a)) is also a dilation structure, for

any a ∈ (0, 1], where
da(x, y) = (d(x, y))

a
, δ(a)x

ε = δx

ε
1
a
.
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5.2 Nonstandard dilations in the euclidean space

Take X = R
2 with the euclidean distance. For any z ∈ C of the form z = 1 + iθ we define dilations

δεx = εzx .

It is easy to check that (X, δ,+, d) is a conical group, equivalenty that the dilations

δx
ε y = x+ δε(y − x) .

form a dilation structure with the euclidean distance.
Two such dilation structures (constructed with the help of complex numbers 1 + iθ and 1 + iθ′)

are equivalent if and only if θ = θ′.
There are two other surprising properties of these dilation structures. The first is that if θ 6= 0

then there are no non trivial Lipschitz curves in X which are differentiable almost everywhere. The
second property is that any holomorphic and Lipschitz function from X to X (holomorphic in the
usual sense on X = R2 = C) is differentiable almost everywhere, but there are Lipschitz functions
from X to X which are not differentiable almost everywhere (suffices to take a C∞ function from R

2

to R
2 which is not holomorphic).

5.3 Normed groups with dilations

The following result is theorem 15 [5].

Theorem 5.1 Let (G, δ, ‖ · ‖) be a locally compact normed local group with dilations. Then (G, d, δ)
is a dilation structure, where δ are the dilations defined by (12) and the distance d is induced by the
norm as in (11).

Proof. The axiom A0 is straightforward from definition 3.1, definition 3.2, axiom H0, and because
the dilation structure is left invariant, in the sense that the transport by left translations inG preserves
the dilations δ. We also trivially have axioms A1 and A2 satisfied.

For the axiom A3 remark that

d(δx
ε u, δ

x
ε v) = d(xδε(x

−1u), xδε(x
−1u)) = d(δε(x

−1u), δε(x
−1v)).

Denote U = x−1u, V = x−1v and for ε > 0 let

βε(u, v) = δ−1
ε ((δεu)(δεv)) .

We have then:
1

ε
d(δx

εu, δ
x
ε v) =

1

ε
‖δεβε

(

δ−1
ε

(

(δεV )−1
)

, U
)

‖ .

Define the function
dx(u, v) = ‖β(V −1, U)‖N .

From definition 3.2 axioms H1, H2, and from definition 3.3 (d), we obtain that axiom A3 is satisfied.
For the axiom A4 we have to compute:

∆x(u, v) = δ
δx

ε u

ε−1 δ
x
ε v = (δx

εu) (δε)
−1
(

(δx
εu)

−1 (δx
ε v)
)

=

= (xδεU)βε

(

δ−1
ε

(

(δεV )−1
)

, U
)

→ xβ
(

V −1, U
)

as ε→ 0. Therefore axiom A4 is satisfied. �
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5.4 Riemannian manifolds

The following interesting quotation from Gromov book [23], pages 85-86, motivates some of the ideas
underlying dilation structures, especially in the very particular case of a riemannian manifold:

“3.15. Proposition: Let (V, g) be a Riemannian manifold with g continuous. For each v ∈ V
the spaces (V, λd, v) Lipschitz converge as λ → ∞ to the tangent space (TvV, 0) with its Euclidean
metric gv.

Proof+ : Start with a C1 map (R
n
, 0) → (V, v) whose differential is isometric at 0. The λ-scalings

of this provide almost isometries between large balls in Rn and those in λV for λ → ∞. Remark:
In fact we can define Riemannian manifolds as locally compact path metric spaces that satisfy the
conclusion of Proposition 3.15.“

The problem of domains and codomains left aside, any chart of a Riemannian manifold induces
locally a dilation structure on the manifold. Indeed, take (M,d) to be a n-dimensional Riemannian
manifold with d the distance on M induced by the Riemannian structure. Consider a diffeomorphism
φ of an open set U ⊂M onto V ⊂ R

n and transport the dilations from V to U (equivalently, transport
the distance d from U to V ). There is only one thing to check in order to see that we got a dilation
structure: the axiom A3, expressing the compatibility of the distance d with the dilations. But this
is just a metric way to express the distance on the tangent space of M at x as a limit of rescaled
distances (see Gromov Proposition 3.15, [23], p. 85-86). Denoting by gx the metric tensor at x ∈ U ,
we have:

[dx(u, v)]2 =

= gx

(

d

d ε |ε=0

φ−1 (φ(x) + ε(φ(u) − φ(x))) ,
d

d ε |ε=0

φ−1 (φ(x) + ε(φ(v) − φ(x)))

)

A basically different example of a dilation structure on a riemannian manifold will be explained
next. Let M be a n dimensional riemannian manifold and exp be the geodesic exponential. To any
point x ∈M and any vector v ∈ TxM the point expx(v) ∈M is located on the geodesic passing thru
x and tangent to v; if we parameterize this geodesic with respect to length, such that the tangent
at x is parallel and has the same direction as v, then expx(v) ∈ M has the coordinate equal with
the length of v with respect to the norm on TxM . We define implicitly the dilation based at x, of
coefficient ε > 0 by the relation:

δx
ε expx(u) = expx (εu) .

It is not straightforward to check that we obtain a strong dilation structure, but it is true. There are
interesting facts related to the numbers A,B and the minimal regularity required for the riemannian
manifold. This example is different from the first because instead of using a chart (same for all x)
we use a family of charts indexed with respect to the basepoint of the dilations.

6 Length dilation structures

6.1 Length in metric spaces

For a detailed introduction into the subject see for example [1], chapter 1.

Definition 6.1 The (upper) dilation of a map f : X → Y between metric spaces, in a point
u ∈ Y is

Lip(f)(u) = lim sup
ε→0

sup

{

dY (f(v), f(w))

dX(v, w)
: v 6= w , v, w ∈ B(u, ε)

}
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In the particular case of a derivable function f : R → Rn the upper dilation is Lip(f)(t) = ‖ḟ(t)‖.
A function f : (X, d) → (Y, d′) is Lipschitz if there is a positive constant C such that for any

x, y ∈ X we have d′(f(x), f(y)) ≤ C d(x, y). The number Lip(f) is the smallest such positive constant.
Then for any x ∈ X we have the obvious relation Lip(f)(x) ≤ Lip(f).

A curve is a continuous function c : [a, b] → X . The image of a curve is called path. Length
measures paths. Therefore length does not depends on the reparameterization of the path and it is
additive with respect to concatenation of paths.

Definition 6.2 In a metric space (X, d) there are several ways to define the length:

(a) The length of a curve with L1 upper dilation c : [a, b] → X is

L(f) =

∫ b

a

Lip(c)(t) dt

(b) The variation of a curve c : [a, b] → X is the quantity V ar(c) =

= sup

{

n
∑

i=0

d(c(ti), c(ti+1)) : a = t0 < t1 < ... < tn < tn+1 = b

}

(c) The length of the path A = c([a, b]) is the one-dimensional Hausdorff measure of the path.:

l(A) = lim
δ→0

inf

{

∑

i∈I

diam Ei : diam Ei < δ , A ⊂
⋃

i∈I

Ei

}

The definitions are not equivalent. For Lipschitz curves the first two definitions agree. For simple
Lipschitz curves all definitions agree.

Theorem 6.3 For each Lipschitz curve c : [a, b] → X, we have

L(c) = V ar(c) ≥ H1(c([a, b]))

If c is moreover injective then H1(c([a, b])) = V ar(f).

An important tool used in the proof of the previous theorem is the geometrically obvious, but not
straightforward to prove in this generality, reparametrisation Theorem.

Theorem 6.4 Any Lipschitz curve c admits a reparametrisation c′ such that Lip(c′)(t) = 1 for
almost any t ∈ [a, b].

Definition 6.5 We shall denote by ld the length functional induced by the distance d, defined
only on the family of Lipschitz curves. If the metric space (X, d) is connected by Lipschitz curves,
then the length induces a new distance dl, given by:

dl(x, y) = inf {ld(c([a, b])) : c : [a, b] → X Lipschitz ,

c(a) = x , c(b) = y}

A length metric space is a metric space (X, d), connected by Lipschitz curves, such that d = dl.
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From theorem 6.3 we deduce that Lipschitz curves in complete length metric spaces are absolutely
continuous. Indeed, here is the definition of an absolutely continuous curve (definition 1.1.1, chapter
1, [1]).

Definition 6.6 Let (X, d) be a complete metric space. A curve c : (a, b) → X is absolutely con-
tinuous if there exists m ∈ L1((a, b)) such that for any a < s ≤ t < b we have

d(c(s), c(t)) ≤

∫ t

s

m(r) dr.

Such a function m is called a upper gradient of the curve c.

According to theorem 6.3, for a Lipschitz curve c : [a, b] → X in a complete length metric space
such a function m ∈ L1((a, b)) is the upper dilation Lip(c). More can be said about the expression
of the upper dilation. We need first to introduce the notion of metric derivative of a Lipschitz curve.

Definition 6.7 A curve c : (a, b) → X is metrically derivable in t ∈ (a, b) if the limit

md(c)(t) = lim
s→t

d(c(s), c(t))

| s− t |

exists and it is finite. In this case md(c)(t) is called the metric derivative of c in t.

For the proof of the following theorem see [1], theorem 1.1.2, chapter 1.

Theorem 6.8 Let (X, d) be a complete metric space and c : (a, b) → X be an absolutely continuous
curve. Then c is metrically derivable for L1-a.e. t ∈ (a, b). Moreover the function md(c) belongs to
L1((a, b)) and it is minimal in the following sense: md(c)(t) ≤ m(t) for L1-a.e. t ∈ (a, b), for each
upper gradient m of the curve c.

Consider (X, d) a complete, locally compact metric space, and a triple (X, d, δ) which satisfies A0,
A1, A2. Denote by Lip([0, 1], X, d) the space of d-Lipschitz curves c : [0, 1] → X . Let also ld denote
the length functional associated to the distance d.

6.2 Gamma-convergence of length functionals

Definition 6.9 For any ε ∈ (0, 1) we define the length functional

lε : Lε(X, d, δ) → [0,+∞] , lε(x, c) = lxε (c) =
1

ε
ld(δ

x
ε c)

The domain of definition of the functional lε is the space:

Lε(X, d, δ) = {(x, c) ∈ X × C([0, 1], X) : c : [0, 1] ∈ U(x) ,

δx
ε c is d− Lip and Lip(δx

ε c) ≤ 2 ld(δ
x
ε c)}

The last condition from the definition of Lε(X, d, δ) is a selection of parameterization of the path
c([0, 1]). Indeed, by the reparameterization theorem, if δx

ε c : [0, 1] → (X, d) is a d-Lipschitz curve of
length L = ld(δ

x
ε c) then δx

ε c([0, 1]) can be reparameterized by length, that is there exists a increasing
function φ : [0, L] → [0, 1] such that c′ = δx

ε c ◦ φ is a d-Lipschitz curve with Lip(c′) ≤ 1. But we can
use a second affine reparameterization which sends [0, L] back to [0, 1] and we get a Lipschitz curve
c” with c”([0, 1]) = c′([0, 1]) and Lip(c”) ≤ 2ld(c).

We shall use the following definition of Gamma-convergence (see the book [17] for the notion of
Gamma-convergence). Notice the use of convergence of sequences only in the second part of the
definition.
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Definition 6.10 Let Z be a metric space with distance function D and (lε)ε>0 be a family of func-
tionals lε : Zε ⊂ Z → [0,+∞]. Then lε Gamma-converges to the functional l : Z0 ⊂ Z → [0,+∞]
if:

(a) (liminf inequality) for any function ε ∈ (0,∞) 7→ xε ∈ Zε such that lim
ε→0

xε = x0 ∈ Z0 we

have
l(x0) ≤ lim inf

ε→0
lε(xε)

(b) (existence of a recovery sequence) For any x0 ∈ Z0 and for any sequence (εn)n∈N
such

that lim
n→∞

εn = 0 there is a sequence (xn)n∈N
with xn ∈ Zεn

for any n ∈ N, such that

l(x0) = lim
n→∞

lεn
(xn)

We shall take as the metric space Z the space X × C([0, 1], X) with the distance

D((x, c), (x′, c′)) = max {d(x, x′) , sup {d(c(t), c′(t)) : t ∈ [0, 1]}}

Let L(X, d, δ)be the class of all (x, c) ∈ X × C([0, 1], X) which appear as limits (xn, cn) → (x, c),
with (xn, cn) ∈ Lεn

(X, d, δ), the family (cn)n is d-equicontinuous and εn → 0 as n→ ∞.

Definition 6.11 A triple (X, d, δ) is a length dilation structure if (X, d) is a complete, locally
compact metric space such that A0, A1, A2, are satisfied, together with the following axioms:

A3L. there is a functional l : L(X, d, δ) → [0,+∞] such that for any εn → 0 as n → ∞ the sequence
of functionals lεn

Gamma-converges to the functional l.

A4+ Let us define ∆x
ε (u, v) = δ

δx
ε u

ε−1 δ
x
ε v and Σx

ε (u, v) = δx
ε−1δ

δx
ε u

ε v. Then we have the limits

lim
ε→0

∆x
ε (u, v) = ∆x(u, v)

lim
ε→0

Σx
ε (u, v) = Σx(u, v)

uniformly with respect to x, u, v in compact set.

Remark 6.12 For strong dilation structures the axioms A0 - A4 imply A4+, cf. corollary 9 [5]. The
transformations Σx

ε (u, ·) have the interpretation of approximate left translations in the tangent space
of (X, d) at x.

For any ε ∈ (0, 1) and any x ∈ X the length functional lxε induces a distance on U(x):

d̊x
ε (u, v) = inf {lxε (c) : (x, c) ∈ Lε(X, d, δ) , c(0) = u , c(1) = v}

In the same way the length functional l from A3L induces a distance d̊x on U(x).
Gamma-convergence implies that

d̊x(u, v) ≥ lim sup
ε→0

d̊x
ε (u, v) (16)

Remark 6.13 Without supplementary hypotheses we cannot prove A3 from A3L, that is in principle
length dilation structures are not strong dilation structures.
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7 Properties of (length) dilation structures

7.1 Metric profiles associated with dilation structures

In this subsection we shall look at dilation structures from the metric point of view, by using Gromov-
Hausdorff distance and metric profiles.

We state the interpretation of the axiom A3 as a theorem. But before a definition: we denote by
(δ, ε) the distance on

B̄dx(x, 1) = {y ∈ X : dx(x, y) ≤ 1}

given by

(δ, ε)(u, v) =
1

ε
d(δx

εu, δ
x
ε v) .

Theorem 7.1 Let (X, d, δ) be a dilation structure. The following are consequences of axioms A0, ...
, A3 only:

(a) for all u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all µ ∈ (0, A) we have:

dx(u, v) =
1

µ
dx(δx

µu, δ
x
µv) .

We shall say that dx has the cone property with respect to dilations.

(b) The curve ε > 0 7→ P
x(ε) = [B̄dx(x, 1), (δ, ε), x] is a metric profile.

Proof. (a) Indeed, for ε, µ ∈ (0, 1) we have:

|
1

εµ
d(δx

ε δ
x
µu, δ

x
ε δ

x
µv) − dx(u, v) | ≤ |

1

εµ
d(δx

εµu, δ
x
ε δ

x
µu) −

1

εµ
d(δx

εµv, δ
x
ε δ

x
µv) | +

+ |
1

εµ
d(δx

εµu, δ
x
εµv) − dx(u, v) | .

Use now the axioms A2 and A3 and pass to the limit with ε→ 0. This gives the desired equality.
(b)We have to prove that Px is a metric profile. For this we have to compare two pointed metric

spaces:
(

(δx, εµ), B̄dx(x, 1), x
)

and

(

1

µ
(δx, ε), B̄ 1

µ
(δx,ε)(x, 1), x

)

.

Let u ∈ X such that
1

µ
(δx, ε)(x, u) ≤ 1 .

This means that:
1

ε
d(δx

εx, δ
x
εu) ≤ µ .

Use further axioms A1, A2 and the cone property proved before:

1

ε
dx(δx

εx, δ
x
εu) ≤ (O(ε) + 1)µ

therefore
dx(x, u) ≤ (O(ε) + 1)µ .
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It follows that for any u ∈ B̄ 1
µ

(δx,ε)(x, 1) we can choose w(u) ∈ B̄dx(x, 1) such that

1

µ
dx(u, δx

µw(u)) = O(ε) .

We want to prove that

|
1

µ
(δx, ε)(u1, u2) − (δx, εµ)(w(u1), w(u2)) | ≤ O(εµ) +

1

µ
O(ε) + O(ε) .

This goes as following:

|
1

µ
(δx, ε)(u1, u2) − (δx, εµ)(w(u1), w(u2)) |

= |
1

εµ
d(δx

εu1, δ
x
εu2) −

1

εµ
d(δx

εµw(u1), δ
x
εµw(u2)) |≤

≤ O(εµ) + |
1

εµ
d(δx

εu1, δ
x
εu2) −

1

εµ
d(δx

ε δ
x
µw(u1), δ

x
ε δ

x
µw(u2)) | ≤

≤ O(εµ) +
1

µ
O(ε) +

1

µ
| dx(u1, u2) − dx(δx

µw(u1), δ
x
µw(u2)) .

In order to obtain the last estimate we used twice axiom A3. We continue:

O(εµ) +
1

µ
O(ε) +

1

µ
| dx(u1, u2) − dx(δx

µw(u1), δ
x
µw(u2)) ≤

≤ O(εµ) +
1

µ
O(ε) +

1

µ
dx(u1, δ

x
µw(u1)) +

1

µ
dx(u1, δ

x
µw(u2)) ≤

≤ O(εµ) +
1

µ
O(ε) + O(ε) .

This shows that the property (b) of a metric profile is satisfied. The property (a) is proved in theorem
7.2. �

The following theorem is related to Mitchell [27] theorem 1, concerning sub-riemannian geometry.

Theorem 7.2 In the hypothesis of theorem 7.1, we have the following limit:

lim
ε→0

1

ε
sup {| d(u, v) − dx(u, v) | : d(x, u) ≤ ε , d(x, v) ≤ ε} = 0 .

Therefore if dx is a true (i.e. nondegenerate) distance, then (X, d) admits a metric tangent space in
x.

Moreover, the curve ε 7→ [B̄dx(x, 1), (δ, ε), x] has the following property: let c ∈ (0, 1). Then we
have the inclusion:

δx
µ−1

(

B̄ 1
µ

(δx,ε)(x, c)
)

⊂ B̄dx(x, 1) .

Moreover, the following Gromov-Hausdorff distance is of order O(ε) for µ fixed (that is the modulus
of convergence O(ε) does not depend on µ) :

µ dGH

(

[B̄dx(x, 1), (δx, ε), x], [δx
µ−1

(

B̄ 1
µ

(δx,ε)(x, c)
)

, (δx, εµ), x]
)

= O(ε) .

For another Gromov-Hausdorff distance we have the estimate:

dGH

(

[B̄ 1
µ

(δx,ε)(x, c),
1

µ
(δx, ε), x] , [δx

µ−1

(

B̄ 1
µ

(δx,ε)(x, c)
)

, (δx, εµ), x]

)

= O(εµ)

when ε ∈ (0, ε(c)).
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Proof. We start from the axioms A0, A3 and we use the cone property. By A0, for ε ∈ (0, 1) and
u, v ∈ B̄d(x, ε) there exist U, V ∈ B̄d(x,A) such that

u = δx
εU, v = δx

εV.

By the cone property we have

1

ε
| d(u, v) − dx(u, v) |=|

1

ε
d(δx

εU, δ
x
εV ) − dx(U, V ) | .

By A2 we have

|
1

ε
d(δx

εU, δ
x
εV ) − dx(U, V ) |≤ O(ε).

This proves the first part of the theorem.
For the second part of the theorem take any u ∈ B̄ 1

µ
(δx,ε)(x, c). We have then

dx(x, u) ≤ cµ+ O(ε) .

Then there exists ε(c) > 0 such that for any ε ∈ (0, ε(c)) and u in the mentioned ball we have:

dx(x, u) ≤ µ

In this case we can take directly w(u) = δx
µ−1u and simplify the string of inequalities from the proof

of theorem 7.1, point (b), to get eventually the three points from the second part of the theorem.
�

7.2 Infinitesimal translations

The following proposition contains the main relations between the difference, sum and inverse gates.
In [5] I explained these relations as appearing from the equivalent formalism using binary decorated
trees.

Proposition 7.3 Let (X, ◦ε)ε∈Γ be a Γ-irq. Then we have the relations:

(a) ∆x
ε (u,Σx

ε(u, v)) = v (difference is the inverse of sum)

(b) Σx
ε (u,∆xε(u, v)) = v (sum is the inverse of difference)

(c) ∆x
ε (u, v) = Σx◦εu

ε (invx
εu, v) (difference approximately equals the sum of the inverse)

(d) invx◦u
ε invx

ε u = u (inverse operation is approximatively an involution)

(e) Σx
ε (u,Σx◦εu

ε (v, w)) = Σx
ε(Σx

ε (u, v), w) (approximate associativity of the sum)

(f) invx
ε u = ∆x

ε (u, x)

(g) Σx
ε (x, u) = u (neutral element at right).

Theorem 7.4 Let (X, d, δ) be a dilation structure. Then the ”infinitesimal translations”

Lx
u(v) = lim

ε→0
∆x

ε (u, v)

are dx isometries.
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Proof. The first part of the conclusion of theorem 7.2 can be written as:

sup

{

1

ε
| d(u, v) − dx(u, v) | : d(x, u) ≤

3

2
ε, d(x, v) ≤

3

2
ε

}

→ 0 (17)

as ε→ 0.
For ε > 0 sufficiently small the points x, δx

εu, δ
x
ε v, δ

x
εw are close one to another. Precisely, we have

d(δε
xu, δ

ε
xv) = ε(dx(u, v) + O(ε)) .

Therefore, if we choose u, v, w such that dx(u, v) < 1, dx(u,w) < 1, then there is η > 0 such that for
all ε ∈ (0, η) we have

d(δε
xu, δ

ε
xv) ≤

3

2
ε , d(δε

xu, δ
ε
xv) ≤

3

2
ε .

We apply the estimate (17) for the basepoint δx
εu to get:

1

ε
| d(δx

ε v, δ
x
εw) − dδx

ε u(δx
ε v, δ

x
εw) |→ 0

when ε→ 0. This can be written, using the cone property of the distance dδx
ε u, like this:

|
1

ε
d(δx

ε v, δ
x
εw) − dδx

ε u
(

δ
δx

ε u

ε−1δ
x
ε v, δ

δx
ε u

ε−1 δ
x
εw
)

|→ 0 (18)

as ε→ 0. By the axioms A1, A3, the function

(x, u, v) 7→ dx(u, v)

is an uniform limit of continuous functions, therefore uniformly continuous on compact sets. We can
pass to the limit in the left hand side of the estimate (18), using this uniform continuity and axioms
A3, A4, to get the result. �

Corollary 7.5 If for any x the distance dx is non degenerate then there exists C > 0 such that: for
any x and u with d(x, u) ≤ C there exists a dx isometry Σx(u, ·) obtained as the limit:

lim
ε→0

Σx
ε (u, v) = Σx(u, v)

uniformly with respect to x, u, v in compact set.

Proof. From theorem 7.4 we know that ∆x(u, ·) is a dx isometry. If dx is non degenerate then
∆x(u, ·) is invertible. Let Σx(u, ·) be the inverse.

From proposition 7.3 we know that Σx
ε (u, ·) is the inverse of ∆x

ε (u, ·). Therefore

dx(Σx
ε (u,w),Σx(u,w)) = dx(∆x(u,Σx

ε (u,w)), w) =

= dx(∆x(u,Σx
ε (u,w)),∆x

ε (u,Σx
ε(u,w)).

From the uniformity of convergence in theorem 7.4 and the uniformity assumptions in axioms of
dilation structures, the conclusion follows. �

The next theorem is the generalization of proposition 3.5.

Theorem 7.6 Let (X, d, δ) be a dilation structure (which satisfies the strong form of the axiom A2),
such that for any x ∈ X the distance dx is non degenerate. Then for any x ∈ X (U(x),Σx, δx) is a
conical group. Moreover, left translations of this group are dx isometries.
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Proof. We start by proving that (U(x),Σx) is a local uniform group. The uniformities are induced
by the distance d.

We shall use the general relations written in terms of binary decorated trees. Indeed, according
to proposition 7.3, we can pass to the limit with ε→ 0 and define:

invx(u) = lim
ε→0

∆x
ε (u, x) = ∆x(u, x).

From relation (d) , proposition (7.3) we get (after passing to the limit with ε→ 0)

invx(invx(u)) = u.

We shall see that invx(u) is the inverse of u. Relation (c), proposition (7.3) gives:

∆x(u, v) = Σx(invx(u), v) (19)

therefore relations (a), (b) from proposition 7.3 give

Σx(invx(u),Σx(u, v)) = v, (20)

Σx(u,Σx(u, v)) = v. (21)

Relation (e) from proposition 7.3 gives

Σx(u,Σx(v, w)) = Σx(Σx(u, v), w) (22)

which shows that Σx is an associative operation. From (21), (20) we obtain that for any u, v

Σx(Σx(invx(u), u), v) = v, (23)

Σx(Σx(u, invx(u)), v) = v. (24)

Remark that for any x, v and ε ∈ (0, 1) we have Σx(x, v) = v. Therefore x is a neutral element at
left for the operation Σx. From the definition of invx, relation (19) and the fact that invx is equal
to its inverse, we get that x is an inverse at right too: for any x, v we have

Σx(v, x) = v.

Replace now v by x in relations (23), (24) and prove that indeed invx(u) is the inverse of u.
We still have to prove that (U(x),Σx) admits δx as dilations.In this reasoning we need the axiom

A2 in strong form.
Namely we have to prove that for any µ ∈ (0, 1) we have

δx
µΣx(u, v) = Σx(δx

µu, δ
x
µv).

For this is sufficient to notice that

δx
µ∆x

εµ(u, v) = ∆x
ε (δx

µu, δ
x
µv)

and pass to the limit as ε → 0. Notice that here we used the fact that dilations δx
ε and δx

µ exactly
commute (axiom A2 in strong form).

Finally, left translations Lx
u are dx isometries. Indeed, this is a straightforward consequence of

theorem 7.4 and corollary 7.5. �

Definition 7.7 The (local) conical group (U(x),Σx, δx) can be seen as the tangent space of (X, d, δ)
at x. We shall denote it by Tx(X, d, δ) = (U(x),Σx, δx), or by TxX if (d, δ) are clear from the context.
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7.3 Topological considerations

In this subsection we compare various topologies and uniformities related to a dilation structure.
The axiom A3 implies that for any x ∈ X the function dx is continuous, therefore open sets with

respect to dx are open with respect to d.
If (X, d) is separable and dx is non degenerate then (U(x), dx) is also separable and the topologies

of d and dx are the same. Therefore (U(x), dx) is also locally compact (and a set is compact with
respect to dx if and only if it is compact with respect to d).

If (X, d) is separable and dx is non degenerate then the uniformities induced by d and dx are the
same. Indeed, let {un : n ∈ N} be a dense set in U(x), with x0 = x. We can embed (U(x), (δx, ε))
isometrically in the separable Banach space l∞, for any ε ∈ (0, 1), by the function

φε(u) =

(

1

ε
d(δx

εu, δ
x
εxn) −

1

ε
d(δx

ε x, δ
x
εxn)

)

n

.

A reformulation of point (a) in theorem 7.1 is that on compact sets φε uniformly converges to the
isometric embedding of (U(x), dx)

φ(u) = (dx(u, xn) − dx(x, xn))n .

Remark that the uniformity induced by (δ, ε) is the same as the uniformity induced by d, and that it
is the same induced from the uniformity on l∞ by the embedding φε. We proved that the uniformities
induced by d and dx are the same.

From previous considerations we deduce the following characterization of tangent spaces associated
to a dilation structure.

Corollary 7.8 Let (X, d, δ) be a strong dilation structure with group Γ = (0,+∞). Then for any
x ∈ X the local group (U(x),Σx) is locally a simply connected Lie group whose Lie algebra admits a
positive graduation (a homogeneous group).

Proof. Use the facts: (U(x),Σx) is a locally compact group (from previous topological considera-
tions) which admits δx as a contractive automorphism group (from theorem 7.6). Apply then Siebert
proposition 3.11 ( which is [29] proposition 5.4). �

Remark 7.9 S. Vodopyanov (private communication) made the observation that in the proof of
corollary 6.3 [6] it is used Siebert’ proposition 5.4 [29], which is true for conical groups (in our
language), while I am using it for local conical groups. This is true and constitutes a gap in the
proof of the corollary 6.3. Fortunately the recent paper [18] provides the needed result for local groups.
Indeed, theorem 1.1 [18] states that a locally compact, locally connected, contractible (with Siebert’
wording) group is locally isomorphic to a contractive Lie group.

7.4 Tangent bundle of a dilation structure

The following two theorems describe the most important metric and algebraic properties of a dilation
structure. As presented here these are condensed statements, available in full length as theorems 7,
8, 10 in [5]. The first theorem does not need a proof (see theorem 7 [5]).

Straightforward modifications in the proof of the before mentioned theorems allow us to extend
some results to length dilation structures.

Theorem 7.10 Let (X, d, δ) be a strong dilation structure or a length dilation structure. Then:
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(a) Σx is a local group operation on U(x), with x as neutral element and invx as the inverse element
function;

(b) for strong dilation structures the distance dx is left invariant with respect to the group operation
from point (a); for length dilation structures the length functional lx = l(x, ·) is invariant with
respect to left translations Σx(y, ·), y ∈ U(x);

(c) For any ε ∈ (0, 1] the dilation δx
ε is an automorphism with respect to the group operation from

point (a);

(d) for strong dilation structures the distance dx has the cone property with respect to dilations: for
any u, v ∈ X such that d(x, u) ≤ 1 and d(x, v) ≤ 1 and all µ ∈ (0, A) we have:

dx(u, v) =
1

µ
dx(δx

µu, δ
x
µv)

For length dilation structures we have for any µ ∈ (0, 1] the equality

l(x, δx
µc) = µ l(x, c)

Proof. We shall only prove the statements concerning length dilation structures. For (a) and (c)
notice that the axiom A4+ is all that we need in order to transform the proof of theorem 10 [5] into
a proof of this point. Indeed, for this we need the existence of the limits from A4+ and the algebraic
relations from theorem 11 [5] which are true only from A0, A1, A2.

For (b) remark that if (δx
ε y, c) ∈ Lε(X, d, δ) then (x,Σx

ε (y, ·)c) ∈ Lε(X, d, δ) and moreover

lε(δ
x
ε y, c) = lε(x,Σ

x
ε (y, ·)c)

Indeed, this is true because of the equality:

δδx
ε yc = δx

ε Σx
ε (y, ·)c

By passing to the limit with ε→ 0 and using A3L and A4+ we get

l(x, c) = l(x,Σx(y, ·)c)

For (d) remark that for any ε, µ > 0 (and sufficiently small) (x, c) ∈ Lεµ(X, d, δ) is equivalent
with (x, δx

µc) ∈ Lε(X, d, δ) and moreover:

lε(x, δ
x
µc) =

1

ε
ld(δ

x
εµc) = µ lεµ(x, c)

We pass to the limit with ε→ 0 and we get the desired equality. �

7.5 Differentiability with respect to dilation structures

For any strong dilation structure or length dilation structure there is an associated notion of differ-
entiability (section 7.2 [5]). First we need the definition of a morphism of conical groups.

Definition 7.11 Let (N, δ) and (M, δ̄) be two conical groups. A function f : N → M is a conical
group morphism if f is a group morphism and for any ε > 0 and u ∈ N we have f(δεu) = δ̄εf(u).
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The definition of the derivative, or differential, with respect to dilations structures follows. In the
case of a pair of Carnot groups this is just the definition of the Pansu derivative introduced in [28].

Definition 7.12 Let (X, d, δ) and (Y, d, δ) be two strong dilation structures or length and f : X → Y
be a continuous function. The function f is differentiable in x if there exists a conical group morphism
Df(x) : TxX → Tf(x)Y , defined on a neighbourhood of x with values in a neighbourhood of f(x) such
that

lim
ε→0

sup

{

1

ε
d
(

f (δx
εu) , δ

f(x)

ε Df(x)(u)
)

: d(x, u) ≤ ε

}

= 0, (25)

The morphism Df(x) is called the derivative, or differential, of f at x.

The definition also makes sense if the function f is defined on a open subset of (X, d).

8 Dilation structures on sub-riemannian manifolds

In [7] we proved that we can associate dilation structures to regular sub-Riemannian manifolds. This
result, explained further, is the source of inspiration of the notion of a coherent projection (section
11).

Here we show that normal frames are the central objects in the establishment of fundamental
properties in sub-riemannian geometry, in the following precise sense. We prove that for regular sub-
riemannian manifolds, the existence of normal frames (definition 8.7) implies that induced dilation
structures exist (theorems 8.9, 8.10). The existence of normal frames has been proved by Belläıche
[3], starting with theorem 4.15 and ending in the first half of section 7.3 (page 62). From these
facts all classical results concerning the structure of the tangent space to a point of a regular sub-
riemannian manifold can be deduced as straightforward consequences of the theorems which describe
the algebraic structure of the tangent space at a point as being a (local) normed conical group.

The purpose is twofold: (a) we try to show that basic results in sub-riemannian geometry are
particular cases of the abstract theory of dilation structures, and (b) we try to minimize the contri-
bution of classical differential calculus in the proof of these basic results, by showing that in fact the
differential calculus on the sub-riemannian manifold is needed only for proving that normal frames
exist and after this stage an intrinsic way of reasoning is possible.

If we take the point of view of Gromov, that the only intrinsic object on a sub-riemannian manifold
is the Carnot-Carathéodory distance, the underlying differential structure of the manifold is clearly
not intrinsic. Nevertheless in all proofs that I know this differential structure is heavily used. Here
we try to prove that in fact it is sufficient to take as intrinsic objects of sub-riemannian geometry the
Carnot-Carathéodory distance and dilation structures compatible with it.

The closest results along these lines are maybe the ones of Vodopyanov. There is a clear cor-
respondence between his way of defining the tangent bundle of a sub-riemannian manifold and the
way of dilation structures. In both cases the tangent space to a point is defined only locally, as a
neighbourhood of the point, in the manifold, endowed with a local group operation. Vodopyanov
proves the existence of the (locally defined) operation under very weak regularity assumptions on the
sub-riemannian manifold. The main tool of his proofs is nevertheless the differential structure of the
underlying manifold. In distinction, we prove in [5], in an abstract setting, that the very existence of
a dilation structure induces a locally defined operation. Here we show that the differential structure
of the underlying manifold is important only in order to prove that dilation structures can indeed be
constructed from normal frames.

Let M be a connected n dimensional real manifold. A distribution is a smooth subbundle D of
M . To any point x ∈ M there is associated the vector space Dx ⊂ TxM . The dimension of the
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distribution D at point x ∈M is denoted by

m(x) = dimDx

The distribution is smooth, therefore the function x ∈ M 7→ m(x) is locally constant. We suppose
further that the dimension of the distribution is globally constant and we denote it by m (thus
m = m(x) for any x ∈M). Clearly m ≤ n; we are interested in the case m < n.

A horizontal curve c : [a, b] → M is a curve which is almost everywhere derivable and for almost
any t ∈ [a, b] we have ċ(t) ∈ Dc(t). The class of horizontal curves will be denoted by Hor(M,D).

Further we shall use the following notion of non-integrability of the distribution D.

Definition 8.1 The distribution D is completely non-integrable if M is locally connected by horizontal
curves curves c ∈ Hor(M,D).

A sufficient condition for the distribution D to be completely non-integrable is given by Chow
condition (C) [16].

Theorem 8.2 (Chow) Let D be a distribution of dimension m in the manifold M . Suppose there is
a positive integer number k (called the rank of the distribution D) such that for any x ∈ X there is a
topological open ball U(x) ⊂ M with x ∈ U(x) such that there are smooth vector fields X1, ..., Xm in
U(x) with the property:

(C) the vector fields X1, ..., Xm span Dx and these vector fields together with their iterated brackets
of order at most k span the tangent space TyM at every point y ∈ U(x).

Then the distribution D is completely non-integrable in the sense of definition 8.1.

Definition 8.3 A sub-riemannian (SR) manifold is a triple (M,D, g), where M is a connected man-
ifold, D is a completely non-integrable distribution on M , and g is a metric (Euclidean inner-product)
on the distribution (or horizontal bundle) D.

8.1 The Carnot-Carathéodory distance

Given a distribution D which satisfies the hypothesis of Chow theorem 8.2, let us consider a point
x ∈M , its neighbourhood U(x), and the vector fields X1, ..., Xm satisfying the condition (C).

One can define on U(x) a filtration of bundles as follows. Define first the class of horizontal vector
fields on U :

X 1(U(x), D) = {X ∈ X∞(U) : ∀y ∈ U(x) , X(y) ∈ Dy}

Next, define inductively for all positive integers j:

X j+1(U(x), D) = X j(U(x), D) + [X 1(U(x), D),X j(U(x), D)]

Here [·, ·] denotes the bracket of vector fields. We obtain therefore a filtration X j(U(x), D) ⊂
X j+1(U(x), D). Evaluate now this filtration at y ∈ U(x):

V j(y, U(x), D) =
{

X(y) : X ∈ X j(U(x), D)
}

According to Chow theorem there is a positive integer k such that for all y ∈ U(x) we have

Dy = V 1(y, U(x), D) ⊂ V 2(y, U(x), D) ⊂ ... ⊂ V k(y, U(x), D) = TyM

Consequently, to the sub-riemannian manifold is associated the string of numbers:

ν1(y) = dimV 1(y, U(x), D) < ν2(y) = dim V 2(y, U(x), D) < ... < n = dimM

Generally k, νj(y) may vary from a point to another.
The number k is called the step of the distribution at y.
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Definition 8.4 The distribution D is regular if νj(y) are constant on the manifold M . The sub-
riemannian manifold M,D, g) is regular if D is regular and for any x ∈M there is a topological ball
U(x) ⊂M with x ∈ U(M) and an orthonormal (with respect to the metric g) family of smooth vector
fields {X1, ..., Xm} in U(x) which satisfy the condition (C).

The lenght of a horizontal curve is

l(c) =

∫ b

a

(

gc(t)(ċ(t), ċ(t))
)

1
2 dt

The length depends on the metric g.

Definition 8.5 The Carnot-Carathéodory distance (or CC distance) associated to the sub-riemannian
manifold is the distance induced by the length l of horizontal curves:

d(x, y) = inf {l(c) : c ∈ Hor(M,D) , c(a) = x , c(b) = y}

The Chow theorem ensures the existence of a horizontal path linking any two sufficiently closed
points, therefore the CC distance is locally finite. The distance depends only on the distribution D
and metric g, and not on the choice of vector fields X1, ..., Xm satisfying the condition (C). The space
(M,d) is locally compact and complete, and the topology induced by the distance d is the same as
the topology of the manifold M . (These important details may be recovered from reading carefully
the constructive proofs of Chow theorem given by Belläıche [3] or Gromov [22].)

8.2 Normal frames

In the following we stay in a small open neighbourhood of an arbitrary, but fixed point x0 ∈M . All
results are local in nature (that is they hold for some small open neighbourhood of an arbitrary, but
fixed point of the manifold M). That is why we shall no longer mention the dependence of various
objects on x0, on the neighbourhood U(x0), or the distribution D.

We shall work further only with regular sub-riemannian manifolds, if not otherwise stated. The
topological dimension ofM is denoted by n, the step of the regular sub-riemannian manifold (M,D, g)
is denoted by k, the dimension of the distribution is m, and there are numbers νj , j = 1, ..., k such
that for any x ∈M we have dimV j(x) = νj . The Carnot-Carathéodory distance is denoted by d.

Definition 8.6 An adapted frame {X1, ..., Xn} is a collection of smooth vector fields which is obtained
by the construction described below.

We start with a collection X1, ..., Xm of vector fields which satisfy the condition (C). In particular
for any point x the vectors X1(x), ..., Xm(x) form a basis for Dx. We further associate to any word
a1....aq with letters in the alphabet 1, ...,m the multi-bracket [Xa1

, [..., Xaq
]...].

One can add, in the lexicographic order, n − m elements to the set {X1, ..., Xm} until we get a
collection {X1, ..., Xn} such that: for any j = 1, ..., k and for any point x the set

{

X1(x), ..., Xνj
(x)
}

is a basis for V j(x).

Let {X1, ..., Xn} be an adapted frame. For any j = 1, ..., n the degree deg Xj of the vector field
Xj is defined as the only positive integer p such that for any point x we have

Xj(x) ∈ V p
x \ V p−1(x)

Further we define normal frames. The name has been used by Vodopyanov [31], but for a slightly
different object. The existence of normal frames in the sense of the following definition is the hardest
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technical problem in the classical establishment of sub-riemannian geometry. For the informed reader
the referee pointed out that condition (a) Definition 8.7 is a part of the conclusion of Gromov approx-
imation theorem, namely when one point coincides with the center of nilpotentization; also condition
(b) is equivalent with a statement of Gromov concerning the convergence of rescaled vector fields
to their nilpotentization (an informed reader must at least follow in all details the papers Belläıche
[3] and Gromov [22], where differential calculus in the classical sense is heavily used). Therefore
the conditions of Definition 8.7 concentrate that part of the foundations of sub-riemannian geometry
which makes use of classical differential calculus.

The key details in the Definition below are uniform convergence assumptions. This is in line with
Gromov suggestions in the last section of Belläıche [3].

Definition 8.7 An adapted frame {X1, ..., Xn} is a normal frame if the following two conditions are
satisfied:

(a) we have the limit

lim
ε→0+

1

ε
d

(

exp

(

n
∑

1

εdeg XiaiXi

)

(y), y

)

= A(y, a) ∈ (0,+∞)

uniformly with respect to y in compact sets and a = (a1, ..., an) ∈ W , with W ⊂ R
n compact

neighbourhood of 0 ∈ R
n,

(b) for any compact set K ⊂ M with diameter (with respect to the distance d) sufficiently small,
and for any i = 1, ..., n there are functions

Pi(·, ·, ·) : UK × UK ×K → R

with UK ⊂ R
n a sufficiently small compact neighbourhood of 0 ∈ R

n such that for any x ∈ K
and any a, b ∈ UK we have

exp

(

n
∑

1

aiXi

)

(x) = exp

(

n
∑

1

Pi(a, b, y)Xi

)

◦ exp

(

n
∑

1

biXi

)

(x)

and such that the following limit exists

lim
ε→0+

ε−deg XiPi(ε
deg Xjaj , ε

deg Xkbk, x) ∈ R

and it is uniform with respect to x ∈ K and a, b ∈ UK .

The existence of normal frames is proven in Belläıche [3], starting with theorem 4.15 and ending
in the first half of section 7.3 (page 62).

In order to understand normal frames let us look to the case of a Lie group G endowed with a
left invariant distribution. The distribution is completely non-integrable if it is generated by the left
translation of a vector subspace D of the algebra g = TeG which bracket generates the whole algebra
g. Take {X1, ..., Xm} a collection of m = dimD left invariant independent vector fields and define
with their help an adapted frame, as explained in definition 8.6. Then the adapted frame {X1, ..., Xn}
is in fact normal.
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8.3 Sub-riemannian dilation structures

To any normal frame of a regular sub-riemannian manifold we associate a dilation structure. (Tech-
nically this is a dilation structure defined only locally, as in the case of riemannian manifolds.)

Definition 8.8 To any normal frame {X1, ..., Xn} of a regular sub-riemannian manifold (M,D, g)
we associate the dilation structure (M,d, δ) defined by: d is the Carnot-Carathéodory distance, and
for any point x ∈ M and any ε ∈ (0,+∞) (sufficiently small if necessary), the dilation δx

ε is given
by:

δx
ε

(

exp

(

n
∑

i=1

aiXi

)

(x)

)

= exp

(

n
∑

i=1

aiε
degXiXi

)

(x)

We shall prove that (M,d, δ) is indeed a dilation structure. This allows us to get the main results
concerning the infinitesimal geometry of a regular sub-riemannian manifold.

We only have to prove axioms A3 and A4 of dilation structures. We do this in the next two
theorems.

The first theorem is a result similar to Gromov local approximation theorem [22], p. 135, or to
Belläıche theorem 7.32 [3]. Note however that here we take as a hypothesis the existence of a normal
frame.

Theorem 8.9 Consider X1, ..., Xn a normal frame and the associated dilations provided by definition
8.8. Then axiom A3 of dilation structures is satisfied, that is the limit

lim
ε→0

1

ε
d (δx

εu, δ
x
ε v) = dx(u, v)

exists and it uniform with respect to x,u,v sufficiently closed.

Proof. Let x, u, v ∈M be sufficiently closed. We write

u = exp

(

n
∑

1

uiXi

)

(x) , v = exp

(

n
∑

1

viXi

)

(x)

we compute, using definition 8.8:

1

ε
d (δx

εu, δ
x
ε v) =

1

ε
d

(

δx
ε exp

(

n
∑

1

uiXi

)

(x), δx
ε exp

(

n
∑

1

viXi

)

(x)

)

=

=
1

ε
d

(

exp

(

n
∑

1

εdeg XiuiXi

)

(x), exp

(

n
∑

1

εdeg XiviXi

)

(x)

)

= Aε

Let us denote by uε = exp

(

n
∑

1

εdeg XiuiXi

)

(x). Use the first part of the property (b), definition

8.7 of a normal system, to write further:

Aε =
1

ε
d

(

uε, exp

(

n
∑

1

Pi(ε
deg Xjvj , ε

deg Xkuk, x)Xi

)

(uε)

)

=

=
1

ε
d

(

uε, exp

(

n
∑

1

εdeg Xi
(

ε−deg Xi Pi(ε
deg Xjvj , ε

deg Xkuk, x)
)

Xi

)

(uε)

)
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We make a final notation: for any i = 1, ..., n

aε
i = ε−deg Xi Pi(ε

deg Xjvj , ε
deg Xkuk, x)

thus we have:
1

ε
d (δx

εu, δ
x
ε v) =

1

ε
d

(

uε, exp

(

n
∑

1

εdeg Xiaε
iXi

)

(uε)

)

By the second part of property (b), definition 8.7, the vector aε ∈ R
n converges to a finite value

a0 ∈ R
n, as ε → 0, uniformly with respect to x, u, v in compact set. In the same time uε converges

to x, as ε → 0. The proof ends by using property (a), definition 8.7. Indeed, we shall use the key
assumption of uniform convergence. With the notations from definition 8.7, for fixed η > 0 the term

B(η, ε) =
1

ε
d

(

uη, exp

(

n
∑

1

εdeg Xiaη
iXi

)

(uη)

)

converges to a real number A(uη, aη) as ε → 0, uniformly with respect to uη and aη. Since uη

converges to x and aη converges to a0 as η → 0, by the uniform convergence assumption in (a),
definition 8.7 we get that

lim
ε→0

1

ε
d (δx

εu, δ
x
ε v) = lim

η→0
A(uη, aη) = A(x, a0)

The proof is done. �

In the next theorem we prove that axiom A4 of dilation structures is satisfied.

Theorem 8.10 Consider X1, ..., Xn a normal frame and the associated dilations provided by defini-
tion 8.8. Then axiom A4 of dilation structures is satisfied: as ε tends to 0 the quantity

∆x
ε (u, v) = δ

δx
ε u

ε−1 ◦ δx
ε (v)

converges, uniformly with respect to x, u, v sufficiently closed.

Proof. We shall use the notations from definition 8.6, 8.7, 8.8.
Let x, u, v ∈M be sufficiently closed. We write

u = exp

(

n
∑

1

uiXi

)

(x) , v = exp

(

n
∑

1

viXi

)

(x)

We compute now ∆x
ε (u, v):

∆x
ε (u, v) = δ

exp(
P

n
1

εdeg XiuiXi)(x)

ε−1 exp

(

n
∑

1

εdeg XiviXi

)

(x)

Let us denote by uε = δx
εu. Thus we have

∆x
ε (u, v) = δuε

ε−1 exp

(

n
∑

1

εdeg XiviXi

)

(x)

We use the first part of the property (b), definition 8.7, in order to write

exp

(

n
∑

1

εdeg XiviXi

)

(x) = exp

(

n
∑

1

Pi(ε
deg Xjvj , ε

deg Xkuk, x)Xi

)

(uε)
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We finish the computation:

∆x
ε (u, v) = exp

(

n
∑

1

ε− deg Xi Pi(ε
deg Xjvj , ε

deg Xkuk, x)Xi

)

(uε)

As ε goes to 0 the point uε converges to x uniformly with respect to x, u sufficiently closed (as a
corollary of the previous theorem, for example). The proof therefore ends by invoking the second
part of the property (b), definition 8.7. �

With the help of a normal frame we can therefore prove the existence of strong dilation structures
on regular sub-riemannian manifolds.

Theorem 8.11 Let (M,D, g) be a regular sub-riemannian manifold, U ⊂ M an open set which
admits a normal frame. Define for any x ∈ U and ε > 0 (sufficiently small if necessary), the dilation
δx
ε given by:

δx
ε

(

exp

(

n
∑

i=1

aiXi

)

(x)

)

= exp

(

n
∑

i=1

aiε
degXiXi

)

(x)

Then (U, d, δ) is a strong dilation structure.

9 The Radon-Nikodym property

Let (X, d, δ) be a strong dilation structure or a length dilation structure. We have then a notion
of differentiability for curves in X , seen as continuous functions from (a open interval in) R, with
the usual dilation structure, to X with the dilation structure (X, d, δ). Further we want to see what
differentiability in the sense of definition 7.12 means for curves. In proposition 9.2 we shall arrive to
a kind of intrinsic notion of a distribution in a dilation structure, with the geometrical meaning of a
cone of all possible derivatives of curves passing through a point.

Definition 9.1 In a normed conical group N we shall denote by D(N) the set of all u ∈ N with the
property that ε ∈ ((0,∞),+) 7→ δεu ∈ N is a morphism of groups.

D(N) is always non empty, because it contains the neutral element of N . D(N) is also a cone, with
dilations δε, and a closed set.

Proposition 9.2 Let (X, d, δ) be a strong dilation structure or a length dilation structure and let
c : [a, b] → (X, d) be a continuous curve. For any x ∈ X and any y ∈ Tx(X, d, δ) we denote by

invx(y) = ∆x(y, x)

the inverse of y with respect to the group operation in Tx(X, d, δ). Then the following are equivalent:

(a) c is derivable in t ∈ (a, b) with respect to the dilation structure (X, d, δ);

(b) there exists ċ(t) ∈ D(Tc(t(X, d, δ)) such that

1

ε
d(c(t+ ε), δc(t)

ε ċ(t)) → 0

1

ε
d(c(t− ε), δc(t)

ε invc(t)(ċ(t))) → 0
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Proof. It is straightforward that a conical group morphism f : R → N is defined by its value
f(1) ∈ N . Indeed, for any a > 0 we have f(a) = δaf(1) and for any a < 0 we have f(a) = δaf(1)−1.
From the morphism property we also deduce that

δv =
{

δav : a > 0, v = f(1) or v = f(1)−1
}

is a one parameter group and that for all α, β > 0 we have δα+βu = δαu δβu. We have therefore a
bijection between conical group morphisms f : R → (N, δ) and elements of D(N).

The curve c : [a, b] → (X, d) is derivable in t ∈ (a, b) if and only if there is a morphism of normed
conical groups f : R → Tc(t(X, d, δ) such that for any a ∈ R we have

lim
ε→0

1

ε
d(c(t+ εa), δc(t)

ε f(a)) = 0

Take ċ(t) = f(1). Then ċ(t) ∈ D(Tc(t(X, d, δ)). For any a > 0 we have f(a) = δc(t)
a ċ(t); otherwise if

a < 0 we have f(a) = δc(t)
a invc(t) ċ(t). This implies the equivalence stated on the proposition. �

Definition 9.3 A strong dilation structure or a length dilation structure (X, d, δ) has the Radon-
Nikodym property (or rectifiability property, or RNP) if any Lipschitz curve c : [a, b] →
(X, d) is derivable almost everywhere.

9.1 Two examples

The following two easy examples will show that not any strong dilation structure has the Radon-
Nikodym property.

For (X, d) = (V, d), a real, finite dimensional, normed vector space, with distance d induced by
the norm, the (usual) dilations δx

ε are given by:

δx
ε y = x+ ε(y − x)

Dilations are defined everywhere.
There are few things to check: axioms 0,1,2 are obviously true. For axiom A3, remark that for

any ε > 0, x, u, v ∈ X we have:
1

ε
d(δx

ε u, δ
x
ε v) = d(u, v) ,

therefore for any x ∈ X we have dx = d.
Finally, let us check the axiom A4. For any ε > 0 and x, u, v ∈ X we have

δ
δx

ε u

ε−1δ
x
ε v = x+ ε(u− x) +

1

ε
(x+ ε(v − x) − x− ε(u− x)) =

= x+ ε(u− x) + v − u

therefore this quantity converges to

x+ v − u = x+ (v − x) − (u− x)

as ε→ 0. The axiom A4 is verified.
This dilation structure has the Radon-Nikodym property.
Further is an example of a dilation structure which does not have the Radon-Nikodym property.

Take X = R
2 with the euclidean distance d. For any z ∈ C of the form z = 1 + iθ we define dilations

δεx = εzx .
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It is easy to check that (R2, d, δ) is a dilation structure, with dilations

δx
ε y = x+ δε(y − x)

Two such dilation structures (constructed with the help of complex numbers 1 + iθ and 1 + iθ′)
are equivalent if and only if θ = θ′.

There are two other interesting properties of these dilation structures. The first is that if θ 6= 0
then there are no non trivial Lipschitz curves in X which are differentiable almost everywhere. It
means that such dilation structure does not have the Radon-Nikodym property.

The second property is that any holomorphic and Lipschitz function from X to X (holomorphic in
the usual sense on X = R2 = C) is differentiable almost everywhere, but there are Lipschitz functions
from X to X which are not differentiable almost everywhere (suffices to take a C∞ function from R

2

to R
2 which is not holomorphic).

9.2 Length formula from Radon-Nikodym property

Theorem 9.4 Let (X, d, δ) be a strong dilation structure with the Radon-Nikodym property, over a
complete length metric space (X, d). Then for any x, y ∈ X we have

d(x, y) = inf

{

∫ b

a

dc(t)(c(t), ċ(t)) dt : c : [a, b] → X Lipschitz ,

c(a) = x, c(b) = y}

Proof. From theorem 6.8 we deduce that for almost every t ∈ (a, b) the upper dilation of c in t can
be expressed as:

Lip(c)(t) = lim
s→t

d(c(s), c(t))

| s− t |

If the dilation structure has the Radon-Nikodym property then for almost every t ∈ [a, b] there is
ċ(t) ∈ D(Tc(t)X) such that

1

ε
d(c(t+ ε), δc(t)

ε ċ(t)) → 0

Therefore for almost every t ∈ [a, b] we have

Lip(c)(t) = lim
ε→0

1

ε
d(c(t+ ε), c(t)) = dc(t)(c(t), ċ(t))

The formula for length follows from here. �

A straightforward consequence is that the distance d is uniquely determined by the ”distribution”
x ∈ X 7→ D(Tx(X, d, δ)) and the function which associates to any x ∈ X the ”norm” ‖ · ‖x :
D(Tx(X, d, δ)) → [0,+∞).

Corollary 9.5 Let (X, d, δ) and (X, d̄, δ̄) be two strong dilation structures with the Radon-Nikodym
property , which are also complete length metric spaces, such that for any x ∈ X we have D(Tx(X, d, δ)) =
D(Tx(X, d̄, δ̄)) and dx(x, u) = d̄x(x, u) for any u ∈ D(Tx(X, d, δ)). Then d = d̄.
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9.3 Equivalent dilation structures and their distributions

Definition 9.6 Two strong dilation structures (X, δ, d) and (X, δ, d) are equivalent if

(a) the identity map id : (X, d) → (X, d) is bilipschitz and

(b) for any x ∈ X there are functions P x, Qx (defined for u ∈ X sufficiently close to x) such that

lim
ε→0

1

ε
d
(

δx
εu, δ

x

εQ
x(u)

)

= 0, (26)

lim
ε→0

1

ε
d
(

δ
x

εu, δ
x
εP

x(u)
)

= 0, (27)

uniformly with respect to x, u in compact sets.

Proposition 9.7 (X, δ, d) and (X, δ, d) are equivalent if and only if

(a) the identity map id : (X, d) → (X, d) is bilipschitz,

(b) for any x ∈ X there are conical group morphisms:

P x : Tx(X, δ, d) → Tx(X, δ, d) and Qx : Tx(X, δ, d) → Tx(X, δ, d)

such that the following limits exist

lim
ε→0

(

δ
x

ε

)−1

δx
ε (u) = Qx(u), (28)

lim
ε→0

(δx
ε )

−1
δ

x

ε (u) = P x(u), (29)

and are uniform with respect to x, u in compact sets.

The next theorem shows a link between the tangent bundles of equivalent dilation structures.

Theorem 9.8 Let (X, d, δ) and (X, d, δ) be equivalent strong dilation structures. Then for any x ∈ X
and any u, v ∈ X sufficiently close to x we have:

Σ
x
(u, v) = Qx (Σx (P x(u), P x(v))) . (30)

The two tangent bundles are therefore isomorphic in a natural sense.

As a consequence, the following corollary is straightforward.

Corollary 9.9 Let (X, d, δ) and (X, d, δ) be equivalent strong dilation structures. Then for any x ∈ X
we have

Qx(D(Tx(X, δ, d))) = D(Tx(X, δ, d))

If (X, d, δ) has the Radon-Nikodym property , then (X, d, δ) has the same property.
Suppose that (X, d, δ) and (X, d, δ) are complete length spaces with the Radon-Nikodym property .

If the functions P x, Qx from definition 9.6 (b) are isometries, then d = d.
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10 Tempered dilation structures

The notion of a tempered dilation structure is inspired by the results from Venturini [30] and Buttazzo,
De Pascale and Fragala [13].

The examples of length dilation structures from this section are provided by the extension of some
results from [13] (propositions 2.3, 2.6 and a part of theorem 3.1) to dilation structures.

The following definition gives a class of distances D(Ω, d̄, δ̄), associated to a strong dilation struc-
ture (Ω, d̄, δ̄), which generalizes the class of distances D(Ω) from [13], definition 2.1.

Definition 10.1 For any strong dilation structure (Ω, d̄, δ̄) we define the class D(Ω, d̄, δ̄) of all dis-
tance functions d on Ω such that

(a) d is a length distance,

(b) for any ε > 0 and any x, u, v sufficiently close the are constants 0 < c < C such that:

c d̄x(u, v) ≤
1

ε
d(δ̄x

ε u, δ̄
x
ε v) ≤ C d̄x(u, v) (31)

The dilation structure (Ω, d̄, δ̄) is tempered if d̄ ∈ D(Ω, d̄, δ̄).
On D(Ω, d̄, δ̄) we put the topology of uniform convergence (induced by distance d̄) on compact

subsets of Ω × Ω.

To any distance d ∈ D(Ω, d̄, δ̄) we associate the function:

φd(x, u) = lim sup
ε→0

1

ε
d(x, δx

εu)

defined for any x, u ∈ Ω sufficiently close. We have therefore

c d̄x(x, u) ≤ φd(x, u) ≤ C d̄x(x, u) (32)

Notice that if d ∈ D(Ω, d̄, δ̄) then for any x, u, v sufficiently close we have

−d̄(x, u)O(d̄(x, u)) + c d̄x(u, v) ≤

≤ d(u, v) ≤ C d̄x(u, v) + d̄(x, u)O(d̄(x, u))

If c : [0, 1] → Ω is a d-Lipschitz curve and d ∈ D(Ω, d̄, δ̄) then we may decompose it in a finite
family of curves c1, ..., cn (with n depending on c) such that there are x1, ..., xn ∈ Ω with ck is d̄xk -
Lipschitz. Indeed, the image of the curve c([0, 1]) is compact, therefore we may cover it with a finite
number of balls B(c(tk), ρk, d̄

c(tk)) and apply (31). If moreover (Ω, d̄, δ̄) is tempered then it follows
that c : [0, 1] → Ω d-Lipschitz curve is equivalent with c d̄-Lipschitz curve.

By using the same arguments as in the proof of theorem 9.4, we get the following extension of
proposition 2.4 [13].

Proposition 10.2 If (Ω, d̄, δ̄) is tempered, with the Radon-Nikodym property, and d ∈ D(Ω, d̄, δ̄) then

d(x, y) = inf

{

∫ b

a

φd(c(t), ċ(t)) dt : c : [a, b] → X d̄-Lipschitz ,

c(a) = x, c(b) = y}

The next theorem is a generalization of a part of theorem 3.1 [13].

Theorem 10.3 Let (Ω, d̄, δ̄) be a strong dilation structure which is tempered, with the Radon-Nikodym
property, and dn ∈ D(Ω, d̄, δ̄) a sequence of distances converging to d ∈ D(Ω, d̄, δ̄). Denote by Ln, L
the length functional induced by the distance dn, respectively by d. Then Ln Γ-converges to L.
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Proof. This is the generalization of the implication (i) ⇒ (iii), theorem 3.1 [13]. The proof (p.
252-253) is almost identical, we only need to replace everywhere expressions like | x − y | by d̄(x, y)
and use proposition 10.2, relations (32) and (31) instead of respectively proposition 2.4 and relations
(2.6) and (2.3) [13]. �

Using this result we obtain a large class of examples of length dilation structures.

Corollary 10.4 If (Ω, d̄, δ̄) is strong dilation structure which is tempered and it has the Radon-
Nikodym property then it is a length dilation structure.

Proof. Indeed, from the hypothesis we deduce that δ̄x
ε d̄ ∈ D(Ω, d̄, δ̄). For any sequence εn → 0 we

thus obtain a sequence of distances dn = δ̄x
εn
d̄ converging to d̄x. We apply now theorem 10.3 and we

get the result. �

11 Coherent projections

For a given dilation structure with the Radon-Nikodym property, we shall give a procedure to con-
struct another dilation structure, such that the first one looks down to the the second one.

This will be done with the help of coherent projections.

Definition 11.1 Let (X, d̄, δ̄) be a strong dilation structure. A coherent projection of (X, d̄, δ̄) is
a function which associates to any x ∈ X and ε ∈ (0, 1] a map Qx

ε : U(x) → X such that:

(I) Qx
ε : U(x) → Qx

ε (U(x)) is invertible and the inverse will be denoted by Qx
ε−1 ; for any ε, µ > 0

and any x ∈ X we have
Qx

ε δ̄
x
µ = δ̄x

µ Q
x
ε

(II) the limit lim
ε→0

Qx
εu = Qxu is uniform with respect to x, u in compact sets.

(III) for any ε, µ > 0 and any x ∈ X we have Qx
ε Q

x
µ = Qx

εµ. Also Qx
1 = id and Qx

εx = x.

(IV) define Θx
ε(u, v) = δ̄x

ε−1 Q
δ̄x

ε Qx
ε u

ε−1 δ̄x
εQ

x
εv. Then the limit exists

lim
ε→0

Θx
ε(u, v) = Θx(u, v)

and it is uniform with respect to x, u, v in compact sets.

Remark 11.2 Property (IV) is basically a smoothness condition on the coherent projection Q, rela-
tive to the strong dilation structure (X, d̄, δ̄).

Proposition 11.3 Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection. We define
δx
ε = δ̄x

ε Q
x
ε . Then:

(a) for any ε, µ > 0 and any x ∈ X we have δx
ε δ̄

x
µ = δ̄x

µ δ
x
ε .

(b) for any x ∈ X we have QxQx = Qx (thus Qx is a projection).

(c) δ satisfies the conditions A1, A2, A4 from definition 4.4.
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Proof. (a) this is a consequence of the commutativity condition (I) (second part). Indeed, we have
δx
ε δ̄

x
µ = δ̄x

ε Q
x
ε δ̄

x
µ = δ̄x

ε δ̄
x
µ Q

x
ε = δ̄x

µ δ̄
x
ε Q

x
ε = δ̄x

µ δ
x
ε .

(b) we pass to the limit ε→ 0 in the equality Qx
ε2 = Qx

ε Q
x
ε and we get, based on condition (II),

that QxQx = Qx.
(c) Axiom A1 for δ is equivalent with (III). Indeed, the equality δx

ε δ
x
µ = δx

εµ is equivalent with:

δ̄x
εµ Q

x
εµ = δ̄x

εµQ
x
ε Q

x
µ. This is true because Qx

ε Q
x
µ = Qx

εµ. We also have δx
1 = δ̄x

1Q
x
1 = Qx

1 = id.

Moreover δx
εx = δ̄x

ε Q
x
εx = Qx

ε δ̄
x
εx = Qx

εx = x. Let us compute now:

∆x
ε (u, v) = δ

δx
ε u

ε−1 δ
x
ε v = δ̄

δx
ε u

ε−1 Q
δx

ε u

ε−1 δ
x
ε v =

= δ̄
δx

ε u

ε−1 δ̄
x
ε Θx

ε(u, v) = ∆̄x
ε (Qx

εu,Θ
x
ε(u, v))

We can pass to the limit in the last term of this string of equalities and we prove that the axiom A4
is satisfied by δ: there exists the limit

∆x(u, v) = lim
ε→0

∆x
ε (u, v) (33)

which is uniform as written in A4, moreover we have the equality

Θx
ε (u, v) = Σ̄x

ε (Qx
εu,∆

x
ε (u, v)) (34)

�

We collect two useful relations in the next proposition.

Proposition 11.4 Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection. We denote
by δ the field of dilations induced by the coherent projection, as in the previous proposition, and by
∆x is defined by (33). Then we have:

∆x(u, v) = ∆̄x(Qxu,Θx(u, v)) (35)

Qx∆x(u, v) = ∆̄x(Qxu,Qxv) (36)

Proof. After passing to the limit with ε→ 0 in the relation (34) we get the formula (35). In order
to prove (36) we notice that:

Q
δx

ε u
ε ∆x

ε (u, v) = Q
δx

ε u
ε δ

δx
ε u

ε−1δ
x
ε v =

= δ̄
δx

ε u

ε−1 δ̄
x
εQ

x
εv = ∆̄x

ε (Qx
εu,Q

x
εv)

which gives(36) as we pass to the limit with ε→ 0 in this relation. �

Next is described the notion of Q-horizontal curve.

Definition 11.5 Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection. A curve
c : [a, b] → X is Q-horizontal if for almost any t ∈ [a, b] the curve c is derivable and the derivative
of c at t, denoted by ċ(t) has the property:

Qc(t)ċ(t) = ċ(t) (37)

A curve c : [a, b] → X is Q-everywhere horizontal if for all t ∈ [a, b] the curve c is derivable and
the derivative has the horizontality property (37).
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We shall now use the notations from section 6. We look first at some induced dilation structures.
For any x ∈ X and ε ∈ (0, 1) the dilation δx

ε can be seen as an isomorphism of strong dilation
structures with coherent projections:

δx
ε : (U(x), δx

ε d̄, δ̂
x
ε , Q̂

x
ε) → (δx

εU(x),
1

ε
d̄, δ̄, Q)

which defines the dilations δ̂x,·
ε,· and coherent projection Q̂x

ε by:

δ̂x,u
ε,µ = δx

ε−1 δ̄
δx

ε u
µ δx

ε

Q̂x,u
ε,µ = δx

ε−1 Q
δx

ε u
µ δx

ε

Also the dilation δ̄x
ε is an isomorphism of strong dilation structures with coherent projections:

δ̄x
ε : (U(x), δ̄x

ε d̄, δ̄
x
ε , Q̄

x
ε) → (δ̄x

εU(x),
1

ε
d̄, δ̄, Q)

which defines the dilations δ̄x,·
ε,· and coherent projection Q̄x

ε by:

δ̄x,u
ε,µ = δ̄x

ε−1 δ̄
δ̄x

ε u
µ δ̄x

ε

Q̄x,u
ε,µ = δ̄x

ε−1 Q
δ̄x

ε u
µ δ̄x

ε

Because δx
ε = δ̄x

ε Q
x
ε we get that

Qx
ε : (U(x), δx

ε d̄, δ̂
x
ε , Q̂

x
ε) → (Qx

εU(x), δ̄x
ε d, δ̄

x
ε , Q̄

x
ε)

is an isomorphism of strong dilation structures with coherent projections.
Further is a useful description of the coherent projection Q̂x

ε .

Proposition 11.6 With the notations previously made, for any ε ∈ (0, 1], x, u, v ∈ X sufficiently
close and µ > 0 we have:

(i) Q̂x,u
ε,µv = Σx

ε (u,Q
δx

ε u
µ ∆x

ε (u, v)),

(ii) Q̂x,u
ε v = Σx

ε (u,Qδx
ε u∆x

ε (u, v)).

Proof. (i) implies (ii) when µ → 0, thus it is sufficient to prove only the first point. This is the
result of a computation:

Q̂x,u
ε,µv = δx

ε−1 Q
δx

ε u
µ δx

ε =

= δx
ε−1 δ

δx
ε u

ε Q
δx

ε u
µ δ

δx
ε u

ε−1 δ
x
ε = Σx

ε (u,Q
δx

ε u
µ ∆x

ε (u, v))

�

Notation concerning derivatives. We shall denote the derivative of a curve with respect to

the dilations δ̂x
ε by

d̂x
ε

dt
. Also, the derivative of the curve c with respect to δ̄ is denoted by

d̄

dt
, and so

on.
By computation we get: the curve c is δ̂x

ε -derivable if and only if δx
ε c is δ̄-derivable and

d̂x
ε

dt
c(t) = δx

ε−1

d̄

dt
(δx

ε c) (t)

With these notations we give a proposition which explains that the operator Θx
ε , from the

definition of coherent projections, is a lifting operator.
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Proposition 11.7 If the curve δx
ε c is Q-horizontal then

d̄x
ε

dt
(Qx

εc) (t) = Θx
ε(c(t),

d̂x
ε

dt
c(t))

Proof. If the curve Qx
εc is δ̄x

ε derivable and Q̄x
ε horizontal. We have therefore:

d̄x
ε

dt
(Qx

εc) (t) = δ̄x
ε−1 Qδx

ε c(t) δ̄x
ε

d̄x
ε

dt
(Qx

εc) (t)

which implies:

δ̄x
ε

d̄x
ε

dt
(Qx

εc) (t) = Q
δx

ε c(t)

ε−1 δ̄x
ε

d̄x
ε

dt
(Qx

εc) (t) = Q
δx

ε c(t)

ε−1 δx
ε

d̂x
ε

dt
c(t)

which is the formula we wanted to prove. �

11.1 Distributions in sub-riemannian spaces

The inspiration for the notion of coherent projection comes from sub-riemannian geometry. We shall
look to the section 8 with a fresh eye.

Further we shall work locally, just as in the mentioned section. Same notations are used. Let
{Y1, ..., Yn} be a frame induced by a parameterization φ : O ⊂ R

n → U ⊂ M of a small open,
connected set U in the manifold M . This parameterization induces a affine dilation structure on U ,
by

δ̃φ(a)
ε φ(b) = φ (a+ ε(−a+ b))

We take the distance d̃(φ(a), φ(b)) = ‖b− a‖.
Let {X1, ..., Xn} be a normal frame, cf. definition 8.7, d be the Carnot-Carathéodory distance

and

δx
ε

(

exp

(

n
∑

i=1

aiXi

)

(x)

)

= exp

(

n
∑

i=1

aiε
degXiXi

)

(x)

be the dilation structure associated, by theorem 8.11.
We may take another dilation structure, constructed as follows: extend the metric g on the

distribution D to a riemannian metric on M , denoted for convenience also by g. Let d̄ be the
riemannian distance induced by the riemannian metric g, and the dilations

δ̄x
ε

(

exp

(

n
∑

i=1

aiXi

)

(x)

)

= exp

(

n
∑

i=1

aiεXi

)

(x)

Then (U, d̄, δ̄) is a strong dilation structure which is equivalent with the dilation structure (U, d̃, δ̃).
From now we may define coherent projections associated either to the pair (δ̃, δ) or to the pair

(δ̄, δ). Because we put everything on the manifold (by the use of the chosen frames), we shall obtain
different coherent projections, both inducing the same dilation structure (U, d, δ).

Let us define Qx
ε by:

Qx
ε

(

exp

(

n
∑

i=1

aiXi

)

(x)

)

= exp

(

n
∑

i=1

aiε
degXi−1Xi

)

(x) (38)

Proposition 11.8 Q is a coherent projection associated with the dilation structure (U, d̄, δ̄) .
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Proof. (I) definition 11.1 is true, because δx
ε u = Qx

ε δ̄
x
ε and δx

ε δ̄
x
ε = δ̄x

ε δ
x
ε . (II), (III) and (IV) are

consequences of these facts and theorem 8.11, with a proof similar to the one of proposition 11.3. �

Definition (38) of the coherent projection Q implies that:

Qx

(

exp

(

n
∑

i=1

aiXi

)

(x)

)

= exp





∑

degXi=1

aiXi



 (x) (39)

Therefore Qx can be seen as a projection onto the (classical differential) geometric distribution.

Remark 11.9 The projection Qx has one more interesting feature: for any x and

u = exp





∑

degXi=1

aiXi



 (x)

we have Qxu = u and the curve

s ∈ [0, 1] 7→ δx
s u = exp



s
∑

degXi=1

aiXi



 (x)

is D-horizontal and joins x and u. This will be related to the supplementary condition (B) further.

We may equally define a coherent projection which induces the dilations δ from δ̃. Also, if
we change the chosen normal frame with another of the same kind, we shall pass to a dilation
structure which is equivalent to (U, d, δ). In conclusion, coherent projections are not geometrical
objects per se, but in a natural way one may define a notion of equivalent coherent projections such
that the equivalence class is geometrical, i.e. independent of the choice of a pair of particular dilation
structures, each in a given equivalence class. Another way of putting this is that a class of equivalent
dilation structures may be seen as a category and a coherent projection is a functor between such
categories. We shall not pursue this line here.

The bottom line is that (U, d̄, δ̄) is a dilation structure which belongs to an equivalence class which
is independent on the distribution D, and also independent on the choice of parameterization φ. It is
associated to the manifold M only. On the other hand (U, d̄, δ̄) belongs to an equivalence class which
is depending only on the distribution D and metric g on D, thus intrinsic to the sub-riemannian
manifold (M,D, g). The only advantage of choosing δ̄, δ related by the normal frame {X1, ..., Xn} is
that they are associated with a coherent projection with a simple expression.

11.2 Length functionals associated to coherent projections

Definition 11.10 Let (X, d̄, δ̄) be a strong dilation structure with the Radon-Nikodym property and
Q a coherent projection. We define the associated distance d : X ×X → [0,+∞] by:

d(x, y) = inf

{

∫ b

a

d̄c(t)(c(t), ċ(t)) dt : c : [a, b] → X d̄-Lipschitz ,

c(a) = x, c(b) = y, and ∀a.e. t ∈ [a, b] Qc(t)ċ(t) = ċ(t)
}
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The relation x ≡ y if d(x, y) < +∞ is an equivalence relation. The space X decomposes into a
reunion of equivalence classes, each equivalence class being connected by horizontal curves.

It is easy to see that d is a finite distance on each equivalence class. Indeed, from theorem 9.4
we deduce that for any x, y ∈ X d(x, y) ≥ d̄(x, y). Therefore d(x, y) = 0 implies x = y. The other
properties of a distance are straightforward.

Later we shall give a sufficient condition (the generalized Chow condition (Cgen)) on the coherent
projection Q for X to be (locally) connected by horizontal curves.

Proposition 11.11 Suppose that X is connected by horizontal curves and (X, d) is complete. Then
d is a length distance.

Proof. Because (X, d) is complete, it is sufficient to check that d has the approximate middle
property: for any ε > 0 and for any x, y ∈ X there exists z ∈ X such that

max {d(x, z), d(y, z)} ≤
1

2
d(x, y) + ε

Given ε > 0, from the definition of d we deduce that there exists a horizontal curve c : [a, b] → X
such that c(a) = x, c(b) = y and d(x, y) + 2ε ≥ l(c) (where l(c) is the length of c with respect to the
distance d̄). There exists then τ ∈ [a, b] such that

∫ τ

a

d̄c(t)(c(t), ċ(t)) dt =

∫ b

τ

d̄c(t)(c(t), ċ(t)) dt =
1

2
l(c)

Let z = c(τ). We have then: max {d(x, z), d(y, z)} ≤
1

2
l(c) ≤

1

2
d(x, y)+ ε. Therefore d is a length

distance. �

Notations concerning length functionals. The length functional associated to the distance
d̄ is denoted by l̄. In the same way the length functional associated with δ̄x

ε is denoted by l̄xε .
We introduce the space Lε(X, d, δ) ⊂ X × Lip([0, 1], X, d):

Lε(X, d, δ) = {(x, c) ∈ X × C([0, 1], X) : c : [0, 1] ∈ U(x) ,

δx
ε c is d̄− Lip, Q− horizontal and Lip(δx

ε c) ≤ 2εld(δ
x
ε c)
}

For any ε ∈ (0, 1) we define the length functional

lε : Lε(X, d, δ) → [0,+∞] , lε(x, c) = lxε (c) =
1

ε
l̄(δx

ε c)

By theorem 9.4 we have:

lxε (c) =

∫ 1

0

1

ε
d̄δx

ε c(t)

(

δx
ε c(t),

d̄

dt
(δx

ε c) (t)

)

dt =

=

∫ 1

0

1

ε
d̄δx

ε c(t)

(

δx
ε c(t), δ

x
ε

d̂x
ε

dt
c(t)

)

dt

Another description of the length functional lxε is the following.

Proposition 11.12 For any (x, c) ∈ Lε(X, d, δ) we have

lxε (c) = l̄xε (Qx
εc)
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Proof. Indeed, we shall use an alternate definition of the length functional. Let c be a curve such
that δx

ε c is d̄-Lipschitz and Q-horizontal. Then:

lxε (c) = sup

{

n
∑

i=1

1

ε
d̄ (δx

ε c(ti), δ
x
ε c(ti+1)) : 0 = t1 < ... < tn+1 = 1

}

=

= sup

{

n
∑

i=1

1

ε
d̄
(

δ̄x
εQ

x
εc(ti), δ̄

x
εQ

x
εc(ti+1)

)

: 0 = t1 < ... < tn+1 = 1

}

=

= l̄xε (Qx
εc)

�

11.3 Supplementary hypotheses

Definition 11.13 Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection. Further
is a list of supplementary hypotheses on Q:

(A) δx
ε is d̄-bilipschitz in compact sets in the following sense: for any compact set K ⊂ X and for

any ε ∈ (0, 1] there is a number L(K) > 0 such that for any x ∈ K and u, v sufficiently close
to x we have:

1

ε
d̄ (δx

εu, δ
x
ε v) ≤ L(K) d̄(u, v)

(B) if u = Qxu then the curve t ∈ [0, 1] 7→ Qx δx
t u = δ̄x

t u = δx
t u is Q-everywhere horizontal and

for any a ∈ [0, 1] we have

lim sup
a→0

l̄
(

t ∈ [0, a] 7→ δ̄x
t u
)

d̄(x, δ̄x
au)

= 1

uniformly with respect to x, u in compact set K.

Condition (A), as well as the property (IV) definition 11.1, is another smoothness condition on Q
with respect to the strong dilation structure (X, d̄, δ̄).

The condition (A) has several useful consequences, among them the fact that for any d̄-Lipschitz
curve c, the curve δx

ε c is also Lipschitz. Another consequence is that Qx
ε is locally d̄-Lipschitz. More

precisely, for any compact set K ⊂ X and for any ε ∈ (0, 1] there is a number L(K) > 0 such that
for any x ∈ K and u, v sufficiently close to x we have:

(

δ̄x
ε d̄
)

(Qx
εu,Q

x
εv) ≤ L(K) d̄(u, v) (40)

with the notation
(

δ̄x
ε d̄
)

(u, v) =
1

ε
d̄
(

δ̄x
εu, δ̄

x
ε v
)

Indeed, we have:
(

δ̄x
ε d̄
)

(Qx
εu,Q

x
εv) =

1

ε
d̄ (δx

εu, δ
x
ε v) ≤ L(K) d̄(u, v)

See the remark 11.9 for the meaning of the condition B for the case sub-riemannian geometry,
where it is explained why condition B is a generalization of the fact that the ”distribution” x 7→
QxU(x) is generated by horizontal one parameter flows.

Condition (B) will be useful later, along with the generalized Chow condition (Cgen).
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12 The generalized Chow condition

Notations about words. For any set A we denote by A∗ the collection of finite words q = a1...ap,
p ∈ N, p > 0. The empty word is denoted by ∅. The length of the word q = a1...ap is | q |= p; the
length of the empty word is 0.

The collection of words infinite at right over the alphabet A is denoted by Aω . For any word
w ∈ Aω ∪A∗ and any p ∈ N we denote by [w]p the finite word obtained from the first p letters of w
(if p = 0 then [w]0 = ∅ (in the case of a finite word q, if p >| q | then [q]p = q).

For any non-empty q1, q2 ∈ A∗ and w ∈ Aω the concatenation of q1 and q2 is the finite word
q1q2 ∈ A∗ and the concatenation of q1 and w is the (infinite) word q1w ∈ Aω. The empty word ∅ is
seen both as an infinite word or a finite word and for any q ∈ A∗ and w ∈ Aω we have q∅ = q (as
concatenation of finite words) and ∅w = w (as concatenation of a finite empty word and an infinite
word).

12.1 Coherent projections as transformations of words

To any coherent projection Q in a strong dilation structure (X, d̄, δ̄) we associate a family of trans-
formations as follows.

Definition 12.1 For any non-empty word w ∈ (0, 1]ω and any ε ∈ (0, 1] we define the transformation

Ψεw : X∗
εw ⊂ X∗ \ {∅} → X∗

given by: for any non-empty finite word q = xx1...xp ∈ X∗
εw we have

Ψεw(xx1...xp) = Ψ1
εw(x)...Ψk+1

εw (xx1...xk)...Ψp+1
εw (xx1...xp)

The functions Ψk
εw are defined by: Ψ1

εw(x) = x, and for any k ≥ 1 we have

Ψk+1
εw ([q]k+1) = δx

ε−1 Q
δx

ε Ψk
εw([q]k)

wk δx
ε qk+1 (41)

If w = ∅ then Ψk
ε∅ is defined as previously Ψ1

ε∅(x) = x, with the only difference that for any k ≥ 1 we
have

Ψk+1
ε∅ ([q]k+1) = δx

ε−1 Qδx
ε Ψk

εw([q]k) δx
ε qk+1

The domain X∗
εw ⊂ X∗ \ {∅} is such that the previous definition makes sense. By using the

definition of a coherent projection, we may redefine X∗
εw as follows: for any compact set K ⊂ X there

is ρ = ρ(K) > 0 such that for any x ∈ K the word q = xx1...xp ∈ X∗
εw if for any k ≥ 1 we have

d̄
(

xk+1,Ψ
k
εw([q]k)

)

≤ ρ

We shall explain the meaning of these transformations for ε = 1.

Proposition 12.2 Suppose that condition (B) holds for the coherent projection Q. If

y = Ψk+1
1∅ (xx1...xk)

then there is a Q-horizontal curve joining x and y.
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Proof. By definition 12.1 for ε = 1 we have:

Ψ1
1w(x) = x , Ψ2

1w(x, x1) = Qx
w1
x1 ,

Ψ3
1w(x, x1, x2) = Q

Qx
w1

x1

w2
x2 ...

Suppose now that condition (B) holds for the coherent projection Q. Then the curve t ∈ [0, 1] 7→
δ̄x
t Q

xu is a Q-horizontal curve joining x with Qxu. Therefore by applying inductively the condition
(B) we get that there is a Q-horizontal curve between Ψk

1∅(xx1...xk−1) and Ψk+1
1∅ (xx1...xk) for any

k > 1 and a Q-horizontal curve joining x and Ψ2
1∅(xx1). �

There are three more properties of the transformations Ψεw.

Proposition 12.3 With the notations from definition 12.1 we have:

(a) Ψεw Ψε∅ = Ψε∅. Therefore we have the equality of sets:

Ψε∅

(

X∗
ε∅ ∩ xX

∗
)

= Ψεw

(

Ψε∅

(

X∗
ε∅ ∩ xX

∗
))

(b) Ψk+1
ε∅ (xq1...qk) = δx

ε−1 Ψk+1
1∅ (xδx

ε q1...δ
x
ε qk)

(c) lim
ε→0

δx
ε−1 Ψk+1

1∅ (xδx
ε q1...δ

x
ε qk) = Ψk+1

0∅ (xq1...qk) uniformly with respect to x, q1, ..., qk in compact

set.

Proof. (a) We use induction on k to prove that for any natural number k we have:

Ψk+1
εw

(

Ψ1
ε∅(x)...Ψ

k+1
ε∅ (xq1...qk)

)

= Ψk+1
ε∅ (xq1...qk) (42)

For k = 0 we have have to prove that x = x which is trivial. For k = 1 we have to prove that

Ψ2
εw

(

Ψ1
ε∅(x)Ψ2

ε∅(xq1)
)

= Ψ2
ε∅(xq1)

This means:
Ψ2

εw (x δx
ε−1 Qxδx

ε q1) = δx
ε−1 Qx

w1
δx
ε δ

x
ε−1 Qx δx

εx1 =

= δx
ε−1 Qx δx

εx1 = Ψ2
ε∅(xq1)

Suppose now that l ≥ 2 and for any k ≤ l the relations (42) are true. Then, as previously, it is
easy to check (42) for k = l + 1.

(b) is true by direct computation. The point (c) is a straightforward consequence of (b) and
definition of coherent projections. �

Definition 12.4 Let N ∈ N be a strictly positive natural number and ε ∈ (0, 1]. We say that x ∈ X
is (ε,N,Q)-nested in a open neighbourhood U ⊂ X if there is ρ > 0 such that for any finite word
q = x1...xN ∈ XN with

δ̄x
ε d̄
(

xk+1,Ψ
k
ε∅([xq]k)

)

≤ ρ

for any k = 1, ..., N , we have q ∈ UN .
If x ∈ U is (ε,N,Q)-nested then denote by U(x, ε,N,Q, ρ) ⊂ UN the collection of words q ∈ UN

such that δ̄x
ε d̄
(

xk+1,Ψ
k
ε∅([xq]k)

)

< ρ for any k = 1, ..., N .

Definition 12.5 A coherent projection Q satisfies the generalized Chow condition if:
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(Cgen) for any compact set K there are ρ = ρ(K) > 0, r = r(K) > 0, a natural number N = N(Q,K)
and a function F (η) = O(η) such that for any x ∈ K and ε ∈ (0, 1] there are neighbourhoods
U(x), V (x) such that any x ∈ K is (ε,N,Q)-nested in U(x), B(x, r, δ̄x

ε d̄) ⊂ V (x) and such that
the mapping

x1...xN ∈ U(x,N,Q, ρ) 7→ ΨN+1
ε∅ (xx1...xN )

is surjective from U(x, ε,N,Q, ρ) to V (x). Moreover for any z ∈ V (x) there exist y1, ...yN ∈
U(x, ε,N,Q, ρ) such that z = ΨN+1

ε∅ (xy1, ...yN ) and for any k = 0, ..., N − 1 we have

δx
ε d̄
(

Ψk+1
ε∅ (xy1...yk),Ψk+2

ε∅ (xy1...yk+1)
)

≤ F (δx
ε d̄(x, z))

Condition (Cgen) is inspired from lemma 1.40 Folland-Stein [19]. If the coherent projection Q
satisfies also (A) and (B) then in the space (U(x), δ̄x

ε ), with coherent projection Q̂x,·
ε.· , we can join any

two sufficiently close points by a sequence of at most N horizontal curves. Moreover there is a control
on the length of these curves via condition (B) and condition (Cgen); in sub-riemannian geometry
the function F is of the type F (η) = η1/m with m positive natural number.

Definition 12.6 Suppose that the coherent projection Q satisfies conditions (A), (B) and (Cgen).
Let us consider ε ∈ (0, 1] and x, y ∈ K, K compact in X. With the notations from definition 12.5,
suppose that there are numbers N = N(Q,K), ρ = ρ(Q,K) > 0 and words x1...xN ∈ U(x, ε,N,Q, ρ)
such that

y = ΨN+1
ε∅ (xx1...xN )

To these data we associate a short curve joining x and y, c : [0, N ] → X defined by: for any
t ∈ [0, N ] then let k = [t], where [b] is the integer part of the real number b. We define the short curve
by

c(t) = δ̄
x,Ψk+1

ε∅
(xx1...xk)

ε,t+N−k QΨk+1

ε∅
(xx1...xk)xk+1

Any short curve joining x and y is a increasing linear reparameterization of a curve c described
previously.

12.2 The candidate tangent space

Let (X, d̄, δ̄) be a strong dilation structure and Q a coherent projection. Then we have the induced
dilations

δ̊x,u
µ v = Σx(u, δx

µ∆x(u, v))

and the induced projection
Q̊x,u

µ v = Σx(u,Qx
µ∆x(u, v))

For any curve c : [0, 1] → U(x) which is δ̊x-derivable and Q̊x-horizontal almost everywhere:

d̊x

dt
c(t) = Q̊x,u d̊

x

dt
c(t)

we define the length

lx(c) =

∫ 1

0

d̄x

(

x,∆x(c(t),
d̊x

dt
c(t))

)

dt

and the distance function:

d̊x(u, v) = inf
{

lx(c) : c : [0, 1] → U(x) is δ̊x-derivable,
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and Q̊x-horizontal a.e. , c(0) = u, c(1) = v
}

We want to prove that (U(x), d̊x, δ̊x) is a strong dilation structure and Q̊x is a coherent projection.
For this we need first the following proposition.

Proposition 12.7 The curve c : [0, 1] → U(x) is δ̊x-derivable, Q̊x-horizontal almost everywhere,
and lx(c) < +∞ if and only if the curve Qxc is δ̄x-derivable almost everywhere and l̄x(Qxc) < +∞.
Moreover, we have

l̄x(Qxc) = lx(c)

Proof. The curve c is Q̊x-horizontal almost everywhere if and only if for almost any t ∈ [0, 1] we
have

Qx ∆x(c(t),
d̊x

dt
c(t)) = ∆x(c(t),

d̊x

dt
c(t))

We shall prove that c is Q̊x-horizontal is equivalent with

Θx(c(t),
d̊x

dt
c(t)) =

d̄x

dt
(Qxc) (t) (43)

Indeed, (43) is equivalent with

lim
ε→0

δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε)) = ∆̄x(Qxc(t),Θx(c(t),

d̊x

dt
c(t)))

which is equivalent with

lim
ε→0

δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε)) = ∆x(c(t),

d̊x

dt
c(t))

But this is equivalent with:

lim
ε→0

δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε)) = lim

ε→0
δx
ε−1∆x(c(t), c(t+ ε)) (44)

The horizontality condition for the curve c can be written as:

lim
ε→0

Qxδx
ε−1∆x(c(t), c(t + ε)) = lim

ε→0
δx
ε−1∆x(c(t), c(t + ε))

We use now the properties of Qx in the left hand side of the previous equality:

Qxδx
ε−1∆x(c(t), c(t+ ε)) = δ̄x

ε−1Qx∆x(c(t), c(t+ ε)) =

= δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε))

thus after taking the limit as ε→ 0 we prove that the limit

lim
ε→0

δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε))

exists and we obtain:

lim
ε→0

δx
ε−1∆x(c(t), c(t+ ε)) = lim

ε→0
δ̄x
ε−1∆̄x(Qxc(t), Qxc(t+ ε))
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This last equality is the same as (44), which is equivalent with (43).
As a consequence we obtain the following equality, for almost any t ∈ [0, 1]:

d̄x

(

x,∆x(c(t),
d̊x

dt
c(t))

)

= ∆̄x(Qxc(t),
d̄x

dt
(Qxc) (t)) (45)

This implies that Qxc is absolutely continuous and by theorem 6.8, as in the proof of theorem 9.4 (but
without using the Radon-Nikodym property property, because we already know that Qxc is derivable
a.e.), we obtain the following formula for the length of the curve Qxc:

l̄x(Qxc) =

∫ 1

0

d̄x

(

x, , ∆̄x(Qxc(t),
d̄x

dt
(Qxc) (t))

)

dt

But we have also:

lx(c) =

∫ 1

0

d̄x

(

x,∆x(c(t),
d̊x

dt
c(t))

)

dt

By (45) we obtain l̄x(Qxc) = lx(c). �

Proposition 12.8 If (X, d̄, δ̄) is a strong dilation structure, Q is a coherent projection and d̊x is finite
then the triple (U(x),Σx, δx) is a normed conical group, with the norm induced by the left-invariant

distance d̊x.

Proof. The fact that (U(x),Σx, δx) is a conical group comes directly from the definition 11.1 of
a coherent projection. Indeed, it is enough to use proposition 11.3 (c) and the formalism of binary
decorated trees in [5] section 4 (or theorem 11 [5]), in order to reproduce the part of the proof
of theorem 10 (p.87-88) in that paper, concerning the conical group structure. There is one small
subtlety though. In the proof of theorem 7.6(a) the same modification of proof has been done starting
from the axiom A4+, namely the existence of the uniform limit lim

ε→0
Σx

ε (u, v) = Σx(u, v). Here we

need first to prove this limit, in a similar way as in the corollary 9 [5]. We shall use for this the

distance d̊x instead of the distance in the metric tangent space of (X, d) at x denoted by dx (which

is not yet proven to exist). The distance d̊x is supposed to be finite by hypothesis. Moreover, by its
definition and proposition 12.7 we have

d̊x(u, v) ≥ d̄x(u, v)

therefore the distance d̊x is non degenerate. By construction this distance is also left invariant with
respect to the group operation Σx(·, ·). Therefore we may repeat the proof of corollary 9 [5] and
obtain the result that A4+ is true for (X, d, δ).

What we need to prove next is that d̊x induces a norm on the conical group (U(x),Σx, δx). For
this it is enough to prove that

d̊x(̊δx,u
µ v, δ̊x,u

µ w) = µ d̊x(v, w) (46)

for any v, w ∈ U(x). This is a direct consequence of relation (45) from the proof of the proposition
12.7. Indeed, by direct computation we get that for any curve c which is Q̊x-horizontal a.e. we have:

lx(̊δx,u
µ c) =

∫ 1

0

d̄x

(

x,∆x

(

δ̊x,u
µ c(t),

d̊x

dt

(

δ̊x,u
µ c

)

(t)

))

dt =

=

∫ 1

0

d̄x

(

x, δx
µ∆x

(

c(t),
d̊x

dt
c(t)

))

dt
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But c is Q̊x-horizontal a.e., which implies, via (45), that

δx
µ∆x

(

c(t),
d̊x

dt
c(t)

)

= δ̄x
µ∆x

(

c(t),
d̊x

dt
c(t)

)

therefore we have

lx(̊δx,u
µ c) =

∫ 1

0

d̄x

(

x, δ̄x
µ∆x

(

c(t),
d̊x

dt
c(t)

))

dt = µ lx(c)

This implies (46), therefore the proof is done. �

Theorem 12.9 If the generalized Chow condition (Cgen) and condition (B) are true then (U(x),Σx, δx)
is local conical group which is a neighbourhood of the neutral element of a Carnot group generated by
QxU(x).

Proof. For any ε ∈ (0, 1], as a consequence of proposition 11.6 we can put the recurrence relations
(41) in the form:

Ψk+1
εw ([q]k+1) = Σx

ε

(

Ψk
εw([q]k), Q

δx
ε Ψk

εw([q]k)
wk

∆x
ε

(

Ψk
εw([q]k), qk+1

)

)

(47)

This recurrence relation allows us to prove by induction that for any k the limit

Ψk
w([q]k) = lim

ε→0
Ψk

εw([q]k)

exists and it satisfies the recurrence relation:

Ψk+1
0w ([q]k+1) = Σx

(

Ψk
0w([q]k), Qx

wk
∆x
(

Ψk
0w([q]k), qk+1

))

(48)

and the initial condition Ψ1
0w(x) = x. We pass to the limit in the generalized Chow condition (Cgen)

and we thus obtain that a neighbourhood of the neutral element x is (algebraically) generated by

QxU(x). Then the distance d̊x. Therefore by proposition 12.8 (U(x),Σx, δx) is a normed conical
group generated by QxU(x).

Let c : [0, 1] → U(x) be the curve c(t) = δx
t u, with u ∈ QxU(x). Then we have Qxc(t) = c(t) =

δ̄x
t u. From condition (B) we get that c is δ̄-derivable at t = 0. A short computation of this derivative

shows that:
dδ̄

dt
c(0) = u

Another easy computation shows that the curve c is δ̄x-derivable if and only if the curve c is δ̄-
derivable at t = 0, which is true, therefore c is δ̄x-derivable, in particular at t = 0. Moreover, the
expression of the δ̄x-derivative of c shows that c is also Qx-everywhere horizontal (compare with the
remark 11.9). We use the proposition 12.7 and relation (43) from its proof to deduce that c = Qxc is

δ̊x-derivable at t = 0, thus for any u ∈ QxU(x) and small enough t, τ ∈ (0, 1) we have

δ̊x,x
t+τu = Σ̄x(δ̄x

t u, δ̄
x
τ u) (49)

By the previous proposition 12.8 and corollary 6.3 [6], the normed conical group (U(x),Σx, δx) is
in fact locally a homogeneous group, i.e. a simply connected Lie group which admits a positive
graduation given by the eigenspaces of δx. Indeed, corollary 6.3 [5] is originally about strong dilation

structures, but the generalized Chow condition implies that the distances d, d̄ and d̊x induce the
same uniformity, which, along with proposition 12.8, are the only things needed for the proof of
this corollary. The conclusion of corollary 6.3 [6] therefore is true, that is (U(x),Σx, δx) is locally a
homogeneous group. Moreover it is locally Carnot if and only if on the generating space QxU(x) any

dilation δ̊x,x
ε u = δ̄x

ε is linear in ε. But this is true, as shown by relation (49). This ends the proof. �
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12.3 Coherent projections induce length dilation structures

Theorem 12.10 If (X, d̄, δ̄) is a tempered strong dilation structure, has the Radon-Nikodym property
and Q is a coherent projection, which satisfies (A), (B), (Cgen) then (X, d, δ) is a length dilation
structure.

Proof. We shall prove that:

(a) for any function ε ∈ (0, 1) 7→ (xε, cε) ∈ Lε(X, d, δ) which converges to (x, c) as ε → 0, with

c : [0, 1] → U(x) δ̊x-derivable and Q̊x-horizontal almost everywhere, we have:

lx(c) ≤ lim inf
ε→0

lxε(cε)

(b) for any sequence εn → 0 and any (x, c), with c : [0, 1] → U(x) δ̊x-derivable and Q̊x-horizontal
almost everywhere, there is a recovery sequence (xn, cn) ∈ Lεn

(X, d, δ) such that

lx(c) = lim
n→∞

lxn(cn)

Proof of (a). This is a consequence of propositions 12.7, 11.12 and definition 11.1 of a coherent
projection. With the notations from (a) we see that we have to prove

lx(c) = l̄x(Qxc) ≤ lim inf
ε→0

l̄xε(Qxε
ε cε)

This is true because (X, d̄, δ̄) is a tempered dilation structure and because of condition (A). Indeed
from the fact that (X, d̄, δ̄) is tempered and from (40) (which is a consequence of condition (A))
we deduce that Qε is uniformly continuous on compact sets in a uniform way: for any compact set
K ⊂ X there is are constants L(K) > 0 (from (A)) and C > 0 (from the tempered condition) such
that for any ε ∈ (0, 1], any x ∈ K and any u, v sufficiently close to x we have:

d̄ (Qx
εu,Q

x
εv) ≤ C

(

δ̄x
ε d̄
)

(Qx
εu,Q

x
εv) ≤ C L(K) d̄(u, v)

The sequence Qx
ε uniformly converges to Qx as ε goes to 0, uniformly with respect to x in compact

sets. Therefore if (xε, cε) ∈ Lε(X, d, δ) converges to (x, c) then (xε, Q
xε
ε cε) ∈ Lε(X, d̄, δ̄) converges to

(x,Qxc). Use now the fact that by corollary 10.4 (X, d̄, δ̄) is a length dilation structure. The proof is
done.

Proof of (b). We have to construct a recovery sequence. We are doing this by discretization of

c : [0, L] → U(x). Recall that c is a curve which is δ̊x-derivable a.e. and Q̊x-horizontal, that is for
almost every t ∈ [0, L] the limit

u(t) = lim
µ→0

δx
µ−1 ∆x(c(t), c(t+ µ))

exists and Qx u(t) = u(t). Moreover we may suppose that for almost every t we have d̄x(x, u(t)) ≤ 1
and l̄x(c) ≤ L.

There are functions ω1, ω2 : (0,+∞) → [0,+∞) with lim
λ→0

ωi(λ) = 0, with the following property:

for any λ > 0 sufficiently small there is a division Aλ = {0 < t0 < ... < tP < L} such that

λ

2
≤ min

{

t0
t1 − t0

,
L− tP

tP − tP−1
, tk − tk−1 : k = 1, ..., P

}

(50)

λ ≥ max

{

t0
t1 − t0

,
L− tP

tP − tP−1
, tk − tk−1 : k = 1, ..., P

}

(51)
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and such that u(tk) exists for any k = 1, ..., P and

d̊x(c(0), c(t0)) ≤ t0 ≤ λ2 (52)

d̊x(c(L), c(tP )) ≤ L− tP ≤ λ2 (53)

d̊x(u(tk−1),∆
x(c(tk−1), c(tk)) ≤ (tk − tk−1) ω

1(λ) (54)

|

∫ L

0

d̄x(x, u(t)) dt −
P−1
∑

k=0

(tk+1 − tk) d̄x(x, u(tk)) | ≤ ω2(λ) (55)

Indeed (52), (53) are a consequence of the fact that c is d̊x-Lipschitz, (54) is a consequence of Egorov
theorem applied to

fµ(t) = δx
µ−1 ∆x(c(t), c(t+ µ))

and (55) comes from the definition of the integral

l(c) =

∫ L

0

d̄x(x, u(t)) dt

For each λ we shall choose ε = ε(λ) and we shall construct a curve cλ with the properties:

(i) (x, cλ) ∈ Lε(λ)(X, d, δ)

(ii) lim
λ→0

lxε(λ)(cλ) = lx(c).

At almost every t the point u(t) represents the velocity of the curve c seen as the the left translation of
d̊x

dt c(t) by the group operation Σx(·, ·) to x (which is the neutral element for the mentioned operation).

The derivative (with respect to δ̊x) of the curve c at t is

y(t) = Σx(c(t), u(t))

Let us take ε > 0, arbitrary for the moment. We shall use the points of the division Aλ and for
any k = 0, ..., P − 1 we shall define the point:

yε
k = Q̂x,c(tk)

ε Σx
ε (c(tk), u(tk)) (56)

Thus yε
k is obtained as the ”projection” by Q̂x,c(tk)

ε of the ”approximate left translation” Σx
ε(c(tk), ·)

by c(tk) of the velocity u(tk). Define also the point:

yk = Σx(c(tk), u(tk))

By construction we have:
yε

k = Q̂x,c(tk)
ε yε

k (57)

and by computation we see that yε
k can be expressed as:

yε
k = δx

ε−1 Qδx
ε c(tk) δ

δx
ε c(tk)

ε u(tk) = (58)

= Σx
ε (c(tk), Qδx

ε c(tk) u(tk)) = δx
ε−1 δ̄

δx
ε c(tk)

ε Qδx
ε c(tk) u(tk)

Let us define the curve
cεk(s) = δ̂x,c(tk)

ε,s yε
k , s ∈ [0, tk+1 − tk] (59)
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which is a Q̂x
ε -horizontal curve (by supplementary hypothesis (B)) which joins c(tk) with the point

zε
k = δ̂

x,c(tk)
ε,tk+1−tk

yε
k (60)

The point zε
k is an approximation of the point

zk = δ̊
x,c(tk)
tk+1−tk

yk

We shall also consider the curve

ck(s) = δ̊x,c(tk)
s yk , s ∈ [0, tk+1 − tk] (61)

There is a short curve gε
k which joins zε

k with c(tk+1), according to condition (Cgen). Indeed, for
ε sufficiently small the points δx

ε z
ε
k and δx

ε c(tk+1) are sufficiently close.
Finally, take gε

0 and gε
P+1 ”short curves” which join c(0) with c(t0) and c(tP ) with c(L) respectively.

Correspondingly, we can find short curves gk (in the geometry of the dilation structure (U(x), d̊x, δ̊x, Q̊x))
joining zk with c(tk+1), which are the uniform limit of the short curves gε

k as ε → 0. Moreover this
convergence is uniform with respect to k (and λ). Indeed, these short curves are made by N curves

of the type s 7→ δ̂x,uε
ε,s vε, with Q̂x,uεvε = vε. Also, the short curves gk are made respectively by N

curves of the type s 7→ δ̊x,u
s v, with Q̊x,uv = v. Therefore we have:

d̄(̊δx,u
s v, δ̂x,uε

ε,s yε
k) =

= d̄(Σx(u, δ̄x
s ∆x(u, v)),Σx

ε (uε, δ̄
δx

ε uε
s ∆x

ε(uε, vε)))

By an induction argument on the respective ends of segments forming the short curves, using the
axioms of coherent projections, we get the result.

By concatenation of all these curves we get two new curves:

cελ = gε
0

(

P−1
∏

k=0

cεk g
ε
k

)

gε
P+1

cλ = g0

(

P−1
∏

k=0

ck gk

)

gP+1

From the previous reasoning we get that as ε→ 0 the curve cελ uniformly converges to cλ, uniformly
with respect to λ.

By theorem 12.9, specifically from relation (49) and considerations below, we notice that for any
u = Qxu the length of the curve s 7→ δx

su is:

lx(s ∈ [0, a] 7→ δx
su) = a d̄x(x, u)

From here and relations (52), (53), (54), (55) we get that

lx(c) = lim
λ→0

lx(cλ) (62)

Condition (B) and the fact that (X, d̄, δ̄) is tempered imply that there is a positive function
ω3(ε) = O(ε) such that

| lxε (cελ) − lx(cλ) | ≤
ω3(ε)

λ
(63)
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This is true because if v Q̂x,u
ε v then δx

ε v = Qδx
ε uδx

ε v, therefore by condition (B)

lxε (s ∈ [0, a] 7→ δ̂x,u
ε,s v)

δx
ε d̄(u, v)

=
l̄(s ∈ [0, a] 7→ δ̄

δx
ε u

s δx
ε v)

d̄(δx
εu, δ

x
ε v)

≤ O(ε) + 1

Since each short curve is made by N segments and the division Aλ is made by 1/λ segments, the
relation (63) follows.

We shall choose now ε(λ) such that ω3(ε(λ)) ≤ λ2 and we define:

cλ = c
ε(λ)
λ

These curves satisfy the properties (i), (ii). Indeed (i) is satisfied by construction and (ii) follows
from the choice of ε(λ), uniform convergence of cελ to cλ, uniformly with respect to λ, and relations
(63), and (62). �
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