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Nonholonomic systems are control systems which depend linearly on the
control. Their underlying geometry is the sub-Riemannian geometry, which
plays for these systems the same role as Euclidean geometry does for linear
systems. In particular the usual notions of approximations at the first order,
that are essential for control purposes, have to be defined in terms of this
geometry. The aim of these notes is to present these notions of approximation
and their link with the metric tangent structure in sub-Riemannian geometry.

1 Geometry of nonholonomic systems

Let M be a smooth n-dimensional manifold.

1.1 Nonholonomic systems

A nonholonomic system on M is a control system which is of the form

(Σ) q̇ =
m∑

i=1

uiXi(q), q ∈M, u = (u1, . . . , um) ∈ Rm, (1)

where X1, . . . , Xm are C∞ vector fields on M .
A path γ : [0, T ] → M is a trajectory of (1) if there exists a function

u(·) ∈ L1([0, T ],Rm), called a control law associated to γ, such that γ is
solution of the ordinary differential equation:

q̇(t) =
m∑

i=1

ui(t)Xi(q(t)), t ∈ [0, T ].

Equivalently, a trajectory is an absolutely continuous path γ on M such that
γ̇(t) ∈ ∆(γ(t)) for almost every t ∈ [0, T ], where we have set, for every
q ∈M ,

∆(q) = span {X1(q), . . . , Xm(q)} ⊂ TqM. (2)

1.2 Sub-Riemannian distances

A nonholonomic system induces a distance on M in the following way. We
first define the sub-Riemannian metric associated to (1) to be the function
g : TM → R given by: for every q ∈M and v ∈ TqM ,

g(q, v) = inf

{
u21 + · · · + u2m :

m∑

i=1

uiXi(q) = v

}
, (3)

where we adopt the convention that inf ∅ = +∞. This function g is smooth
and satisfies:
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• g(q, v) = +∞ if v 6∈ ∆(q),

• g restricted to ∆(q) is a positive definite quadratic form.

Such a metric allows to define a distance in the same way as in Riemannian
geometry. The length of an absolutely continuous path γ(t), t ∈ [0, T ], is

length(γ) =

∫ T

0

√
g (γ(t), γ̇(t))dt.

Note that only trajectories of (1) may have a finite length. Finally, the sub-
Riemannian distance on M associated to the nonholonomic system (1) is
defined by

d(p, q) = inf length(γ),

where the infimum is taken over all absolutely continuous path γ joining p
to q (the fact that d is actually a distance will be proved in subsection 2.2).
In particular, if no trajectory joins p to q, d(p, q) = +∞.

The distance d so defined does not always meet the classical notion of
sub-Riemannian distance arising from a sub-Riemannian manifold. Let us
recall the latter definition.

A sub-Riemannian manifold (M,D, gR) is a smooth manifold M endowed
with a sub-Riemannian structure (D, gR), where:

• D is a distribution on M , that is a subbundle of TM ;

• gR is a Riemannian metric on D, that is a smooth function gR : ∆ → R

which restrictions to D(q) are positive definite quadratic forms.

The sub-Riemannian metric associated to (D, gR) is the function gSR : TM →
R given by

gSR(q, v) =

{
gR(q, v) if v ∈ D(q),
+∞ otherwise.

(4)

The sub-Riemannian distance dSR on (M,D, gR) is then defined from gSR as
above.

What is the difference between the two constructions, that is between the
definitions (3) and (4) of a sub-Riemannian metric?

Consider a sub-Riemannian structure (D, gR). Locally, on some open
subset U , there exist vector fields X1, . . . , Xm which values at each point
q ∈ U form an orthonormal basis of D(q) for the quadratic form gR; the
metric gSR associated to (D, gR) then coincides with the metric g associated
to X1, . . . , Xm. Thus, locally, there is a one-to-one correspondence between
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sub-Riemannian structures and nonholonomic systems for which the rank of
∆(q) = span {X1(q), . . . , Xm(q)} is constant.

However in general this correspondence does not hold globally since, for
topological reasons, a distribution of rank m may not always be generated by
m vector fields on the whole M . Conversely, the vector fields X1, . . . , Xm of a
nonholonomic system do not always generate a linear space ∆(q) of constant
rank. It may even be impossible, again for topological reasons (for instance,
on an even dimensional sphere).

A way to conciliate both notions is to generalize the definition of sub-
Riemannian structure.

Definition. A generalized sub-Riemannian structure onM is a triple (E, σ, gR)
where

• E is a vector bundle over M ;

• σ : E → TM is a morphism of vector bundles;

• gR is a Riemannian metric on E.

To a generalized sub-Riemannian structure is associated a metric defined,
for q ∈M and v ∈ TqM , by

gSR(q, v) = inf{g(q, u) : u ∈ E(q), σ(u) = v}.

The length of absolutely continuous paths and the generalized sub-Riemannian
distance dSR associated to (E, σ, gR) are defined as above.

This definition of sub-Riemannian distance actually contains the two no-
tions of distance we have introduced before.

• Take E = M × Rm, σ : E → TM , σ(q, u) =
∑m

i=1 uiXi(q) and gR the
Euclidean metric on Rm. The resulting generalized sub-Riemannian
distance is the distance associated to the nonholonomic system (1).

• Take E = D, where D is a distribution on M , σ : D →֒ TM the
inclusion, and gR a Riemannian metric on D. We recover the distance
associated to the sub-Riemannian structure (D, gR).

Locally, a generalized sub-Riemannian structure can always be defined
by a single finite family X1, . . . , Xm of vector fields, and so by a nonholo-
nomic system (without rank condition). It actually appears that it is also
true globally (see [ABB12], or [DLPR12] for the fact that a sub-module of
TM is finitely generated): any generalized sub-Riemannian distance may be
associated to a nonholonomic system.

In these notes, we will always consider a sub-Riemannian distance d asso-
ciated to a nonholonomic system. However, as noticed above, all the results
hold for a generalized sub-Riemannian distance.

4



2 Controllability

As previously, M is a smooth n-dimensional manifold and V F (M) denotes
the set of smooth vector fields on M .

2.1 The Chow-Rashevsky Theorem

Let q̇ =
∑m

i=1 uiXi(q) be a nonholonomic system on M . We define ∆1 to be
the subset of V F (M) generated by X1, . . . , Xm,

∆1 = span{X1, . . . , Xm}.

For s ≥ 1, define ∆s+1 = ∆s + [∆1,∆s], where we have set [∆1,∆s] =
span{[X, Y ] : X ∈ ∆1, Y ∈ ∆s}. The Lie algebra generated by X1, . . . , Xm

is defined to be Lie(X1, . . . , Xm) =
⋃
s≥1 ∆s. Due to the Jacobi identity, it is

the smallest linear subspace of V F (M) containing X1, . . . , Xm which is left
invariant by Lie brackets.

Let us denote by I = i1 · · · ik a multi-index of {1, . . . ,m}, and by |I| = k
the length I. We set

XI = [Xi1 , [. . . , [Xik−1
, Xik ] . . . ].

With these notations, ∆s = span{XI : |I| ≤ s}.
For q ∈M , we set Lie(X1, . . . , Xm)(q) = {X(q) : X ∈ Lie(X1, . . . , Xm)},

and, for s ≥ 1, ∆s(q) = {X(q) : X ∈ ∆s}. Both of them are linear subspaces
of TqM .

Definition. We say that the vector fields X1, . . . , Xm satisfy Chow’s Condi-
tion if, ∀q ∈M , Lie(X1, . . . , Xm)(q) = TqM .

Equivalently, for any q ∈ M , there exists an integer r = r(q) such that
dim ∆r(q) = n.

This property is also known as Lie algebra rank condition (LARC), and
as Hörmander condition (in the context of PDE).

Lemma 2.1. Let p be a point in M and Ap be the set of points joined to p
by a trajectory of (1). If X1, . . . , Xm satisfy Chow’s Condition, then Ap is a
neighbourhood of p.

Proof. Let us work in a small neighbourhood U ⊂ M of p that we identify
with a neighbourhood of 0 in Rn .

Let φit be the flow of the vector field Xi. The curves t 7→ φit(q) are
trajectories and we have

φit = id + tXi + o(t).
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Define then φijt as the commutator of flows, that is

φijt = [φit, φ
j
t ] = φj−t ◦ φ

i
−t ◦ φ

j
t ◦ φ

i
t.

It is a well-known fact that φijt = id + t2Xij + o(t2).
For a multi-index I = iJ , we define by induction the local diffeomor-

phisms φIt = [φit, φ
J
t ]. Thus φIt (q) is the endpoint of a trajectory. Moreover it

results from the Campbell-Hausdorff formula that

φIt = id + t|I|XI + o(t|I|).

To obtain a diffeomorphism which derivative with respect to the time is
exactly XI , we set

ψIt =





φI
t1/|I|

if t ≥ 0,
φI
−|t|1/|I|

if t < 0 and |I| is odd,

[φJ
|t|1/|I|

, φi
|t|1/|I|

] if t < 0 and |I| is even.

We have

ψIt = id + tXI + o(t), (5)

and ψIt (q) is the endpoint of a trajectory.
Let us choose now commutators XI1 , . . . , XIn which values at p span TpM .

It is possible since X1, . . . , Xm satisfy Chow’s Condition. Introduce the map
ϕ defined on a small neighbourhood Ω of 0 in Rn by

ϕ(t1, . . . , tn) = ψIntn ◦ · · · ◦ ψI1t1 (p) ∈M.

Due to (5), this map is C1 near 0 and its derivative at 0 is invertible. This
implies that ϕ is a local C1-diffeomorphism and so that φ(Ω) contains a
neighbourhood of p.

Now, for every t ∈ Ω, ϕ(t) results from a concatenation of trajectories,
the first one issued from p. It is then the endpoint of a trajectory starting
from p. Therefore φ(Ω) ⊂ Ap, which implies that Ap is a neighbourhood of
p.

Theorem 2.2 (Chow-Rashevsky’s theorem). If M is connected and if X1, . . . , Xm

satisfy Chow’s Condition, then any two points of M can be joined by a tra-
jectory, and so d <∞.

Proof. Let p ∈ M . If q ∈ Ap, then p ∈ Aq. As a consequence, Ap = Aq for
any q ∈M and the lemma above then implies that Ap is an open set. Hence
the manifold M is covered by the union of the sets Ap that are disjointed
from each other. Since M is connected, there is only one such open set.
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Remark. This theorem appears also as a consequence of the Orbit Theo-
rem (Sussmann, Stefan): each set Ap is a connected immersed submanifold
of M and, at each point q ∈ Ap, Lie(X1, . . . , Xm)(q) ⊂ TqAp. Moreover,
when the rank of the Lie algebra is constant on M , both spaces are equal:
Lie(X1, . . . , Xm)(q) = TqAp.

Thus, when the Lie algebra generated by X1, . . . , Xm has constant rank,
Chow’s Condition is not restrictive: it is indeed satisfied on each Ap by the
restriction to the manifold Ap of the vector fields X1, . . . , Xm.

2.2 Topological structure of (M, d)

The proof of Lemma 2.1 gives a little bit more than the openness of Ap.
For ε small enough, any φit(q), 0 ≤ t ≤ ε is a trajectory of length ε. Thus
ϕ(t1, . . . , tn) is the endpoint of a trajectory of length less than N

(
|t1|

1/|I1| +

· · · + |tn|
1/|In|

)
, where N counts the maximal number of concatenations in-

volved in the ψIit ’s. This gives an upper bound for the distance:

d
(
p, ϕ(t)

)
≤ N

(
|t1|

1/|I1| + · · · + |tn|
1/|In|

)
. (6)

This kind of estimates of the distance in function of local coordinates plays
an important role in sub-Riemannian geometry. However here (t1, . . . , tn)
are not local coordinates: ϕ is only a C1-diffeomorphism, not a smooth
diffeomorphism.

Let’s try to replace (t1, . . . , tn) by local coordinates. Choose local coordi-
nates (y1, . . . , yn) centered at p such that ∂

∂yi
|p = XIi(p). The map ϕy = y ◦ϕ

is a C1-diffeomorphism between neighbourhoods of 0 in Rn, and its differen-
tial at 0 is dϕy0 = IdRn .

Denoting by ‖ · ‖Rn the Euclidean norm on Rn, we obtain, for ‖t‖Rn small
enough, yi(t) = ti + o(‖t‖Rn). The inequality (6) becomes

d(p, qy) ≤ N ′‖y‖
1/r
Rn ,

where qy denotes the point of coordinates y and r = maxi |Ii|. This inequality
allows to compare d to a Riemannian distance.

Let gR be a Riemannian metric on M , and dR the associate Riemannian
distance. On a compact neighbourhood of p, there exists a constant c > 0
such that g(Xi, Xi)(q) ≤ c−1, which implies cdR(p, q) ≤ d(p, q). Moreover
we have dR(p, qy) ≥ Cst‖y‖Rn . We then obtain a first estimate of the sub-
Riemannian distance.

Theorem 2.3. Assume X1, . . . , Xm satisfy Chow’s Condition. For any Rie-
mannian metric gR, we have, for q close enough to p,

cdR(p, q) ≤ d(p, q) ≤ CdR(p, q)1/r
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where c, C are positive constants and r is an integer such that ∆r
p = TpM .

Remark. If we choose for gR a Riemannian metric which is compatible with
g, that is gR|∆ = g, then by construction dR(p, q) ≤ d(p, q).

As a consequence the sub-Riemannian distance d is 1/r-Hölder with re-
spect to any Riemannian distance, and so continuous.

Corollary 2.4. If X1, . . . , Xm satisfy Chow’s Condition, then the topology
of the metric space (M,d) is the original topology of M .

Remark. The converse of Chow’s theorem is false in general. Consider for
instance the nonholonomic system in R3 defined byX1 = ∂x, X2 = ∂y+f(x)∂z
where f(x) = e−1/x2 for positive x and f(x) = 0 otherwise. The associated
sub-Riemannian distance is finite whence X1, . . . , Xm do not satisfy Chow’s
Condition. Moreover the topology of the metric space is different from the
canonical topology of R3.

However, for an analytic nonholonomic system (that is when M and the
vector fields X1, . . . , Xm are in the analytic category), Chow’s Condition is
equivalent to the finiteness of the distance.

3 First-order approximations

Consider a nonholonomic system q̇ =
∑m

i=1 uiXi(q) on a manifold M and the
induced sub-Riemannian distance d. The infinitesimal behaviour of a non-
holonomic system should be captured by an approximation to the first-order.
However the latter notion has to be carefully defined. Take for instance the
usual notion of order at a point p, that is the one induced by the differen-
tial structure of the manifold M . The first-order approximation at p of the
X1, . . . , Xm is the family of constant vector fields X1(p), . . . , Xm(p) (defined
in coordinates on a neighbourhood of p). Being constant, these vector fields
can of course not satisfy Chow’s Condition, and so can not reflect the lo-
cal properties of the nonholonomic system, except in the trivial case where
∆(p) = TpM .

In this section we will then revisit the notion of first-order approximation
and construct the basis of an infinitesimal calculus adapted to the nonholo-
nomic systems. The basic concept is the one of nonholonomic order of a
function at a point. We will then see that approximations to the first-order
appear as nilpotent approximations, X1, . . . , Xm being approximated by vec-
tor fields that generate a nilpotent Lie algebra.

The whole section is concerned with local objects. We then fix a point p ∈
M and an open neighbourhood U of p that we identify with a neighbourhood
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of 0 in Rn in some local coordinates. We also assume that X1, . . . , Xm satisfy
Chow’s Condition.

3.1 Nonholonomic orders

Definition. Let f : M → R be a continuous function. The nonholonomic
order of f at p, denoted by ordp(f), is the real number defined as:

ordp(f) = sup
{
s ∈ R : f(q) = O

(
d(p, q)s

)}
.

This order is always nonnegative. We have ordp(f) = 0 if f(p) 6= 0, and
ordp(f) = +∞ if f(p) ≡ 0.

In the Euclidean case, that is when M = Rn, m = n, and Xi = ∂xi ,
nonholonomic orders coincide with the usual vanishing orders of the analysis.
At x = 0, it is the smallest degree of the monomials which appears with a
nonzero coefficient in the Taylor series

f(x) ∼
∑

cαx
α1

1 . . . xαn
n

of f at 0. We will see now that there exists an analogous characterization of
nonholonomic orders.

Let C∞(p) denote the set of germs of smooth functions at p. For a
function f ∈ C∞(p), we call nonholonomic derivatives of order 1 of f the
Lie derivatives X1f, . . . , Xmf . We call further Xi(Xjf), Xi(Xj(Xkf)),. . .
the nonholonomic derivatives of f of order 2, 3,. . . . The nonholonomic
derivative of order 0 of f at p is f(p).

Proposition 3.1. Let f ∈ C∞(p). Then ordp(f) is the biggest integer k such
that all nonholonomic derivatives of f of order smaller than k vanish at p.
Moreover,

f(q) = O
(
d(p, q)ordp(f)

)
.

Proof. The proposition results from the two following facts:

(i) if ℓ is an integer such that ℓ < ordp(f), then all nonholonomic deriva-
tives of f of order ≤ ℓ vanish at p;

(ii) if ℓ is an integer such that all nonholonomic derivatives of f of order
≤ ℓ vanish at p, then f(q) = O

(
d(p, q)ℓ+1

)
.

Let us first prove point (i). Let ℓ be an integer such that ℓ < ordp(f). We
write a nonholonomic derivative of f of order k ≤ ℓ as

(Xi1 . . . Xikf)(p) =
∂k

∂t1 · · · ∂tk
f
(
etkXik ◦ · · · ◦ et1Xi1 (p)

)∣∣∣
t=0
.
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The point q = etkXik ◦ · · · ◦ et1Xi1 (p) is the endpoint of a trajectory of length
|t1| + · · · + |tn|. Therefore, d(p, q) ≤ |t1| + · · · + |tn|.

Since k ≤ ℓ < ordp(f), there exists a real number s > 0 such that
f(q) = O

(
(|t1| + · · · + |tn|)

k+s
)
. This implies that

(Xi1 . . . Xikf)(p) =
∂k

∂t1 · · · ∂tk
f(q)

∣∣∣
t=0

= 0.

Thus point (i) is proved.

The proof of point (ii) goes by induction on ℓ.
For ℓ = 0, assume that all nonholonomic derivatives of f of order ≤ 0

vanish at p, that is f(p) = 0. Choose any Riemannian metric on M and
denote by dR the associated Riemannian distance on M . There holds f(q) ≤
Cst dR(p, q) near p. By Theorem 2.3, this implies f(q) ≤ Cst d(p, q), and so
property (ii) for ℓ = 0.

Assume that, for a given ℓ ≥ 0, (ii) holds for any function f (induction
hypothesis) and take a function f such that all its nonholonomic derivatives
of order < ℓ+ 1 vanish at p.

Observe that, for i = 1, . . . ,m, all the nonholonomic derivatives of Xif of
order < ℓ vanish at p. Indeed, Xi1 . . . Xik(Xif) = Xi1 . . . XikXif . Applying
the induction hypothesis to Xif yields Xif(q) = O

(
d(p, q)ℓ

)
. In other terms,

there exist positive constants C1, . . . , Cm such that, for q close enough to p,

Xif(q) ≤ Cid(p, q)ℓ.

Fix now a point q near p. There exists a minimizing curve γ(·) joining p
to q, which can be assumed of velocity one.This means that γ satisfies

γ̇(t) =
m∑

i=1

ui(t)Xi

(
γ(t)

)
for a.e. t ∈ [0, T ], γ(0) = p, γ(T ) = q,

with
∑

i u
2
i (t) = 1 a.e. and d(p, q) = length(γ) = T . Actually every sub-arc

of γ is also clearly minimizing, so d
(
p, γ(t)

)
= t for any t ∈ [0, T ].

To estimate f(q) = f
(
γ(T )

)
, we compute the derivative of f

(
γ(t)

)
with

respect to t:

d

dt
f
(
γ(t)

)
=

m∑

i=1

ui(t)Xif
(
γ(t)

)
,

⇒

∣∣∣∣
d

dt
f
(
γ(t)

)∣∣∣∣ ≤
m∑

i=1

|ui(t)|Cid
(
p, γ(t)

)ℓ
≤ Ctℓ,
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where C = C1 + · · ·+Cm. Integrating this inequality between 0 and t yields

∣∣f
(
γ(t)

)∣∣ ≤ |f(p)| +
C

ℓ+ 1
tℓ+1.

We have f(p) = 0 since it is the nonholonomic derivative of f of order 0.
Finally, at t = T = d(p, q), we obtain

|f(q)| ≤
C

ℓ+ 1
T ℓ+1,

which concludes the proof of (ii).

As a consequence, the nonholonomic order of a smooth (germ of) function
is given by the formula:

ordp(f) = min
{
s ∈ N : ∃ i1, . . . , is ∈ {1, . . . ,m} s.t. (Xi1 . . . Xisf)(p) 6= 0

}
,

where as usual we adopt the convention that min ∅ = +∞.
It is clear now that any function in C∞(p) vanishing at p is of order

≥ 1. Moreover, the following basic computation rules are satisfied: for every
functions f, g in C∞(p) and every real number λ 6= 0,

ordp(fg) ≥ ordp(f) + ordp(g),

ordp(λf) = ordp(f),

ordp(f + g) ≥ min
(
ordp(f), ordp(g)

)
.

Notice that the first inequality is actually an equality. However the proof of
this fact requires an additional result (see Proposition 3.2).

The notion of nonholonomic order extends to vector fields. Let V F (p)
denote the set of germs of vector fields at p.

Definition. Let X ∈ V F (p). The nonholonomic order of X at p, denoted
by ordp(X), is the relative integer defined as:

ordp(X) = sup {σ ∈ R : ordp(Xf) ≥ σ + ordp(f), ∀f ∈ C∞(p)} .

The order of a differential operator is defined in exactly the same way.
The fact that ordp(X) ∈ Z arises from the fact that the order of a smooth

function is an integer. Note also that the null vector field is of infinite order,
ordp(0) = +∞.
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The order of a function coincides with its order as a differential operator
acting by multiplication. We have then the following properties, for every
vector fields X, Y and every function f ∈ C∞(p):

ordp([X, Y ]) ≥ ordp(X) + ordp(Y ),

ordp(fX) ≥ ordp(f) + ordp(X),

ordp(X) ≤ ordp(Xf) − ordp(f),

ordp(X + Y ) ≥ min
(
ordp(X), ordp(Y )

)
.

As already noticed for functions, the second inequality is in fact an equality.
This is not the case for the first inequality (take for instance commuting
nonzero vector fields).

As a consequence, X1, . . . , Xm are of order ≥ −1, [Xi, Xj ] of order ≥ −2,
and more generally, if X belongs to the set Liek(X1, . . . , Xm), then it is of
order ≥ −k.

Note that in the Euclidean case (that is, when M = Rn, m = n, and
Xi = ∂xi), the nonholonomic order of a constant differential operator is the
negative of its usual order. For instance ∂xi is of nonholonomic order −1.
Actually, every vector field that do not vanish at p is of nonholonomic order
−1.

Example 3.1 (Heisenberg case). Consider the following vector fields on R3:

X1 = ∂x −
y

2
∂z and X2 = ∂y +

x

2
∂z.

At 0, the coordinates x and y are of order 1 and z is of order 2 since X1x(0) =
X2y(0) = 1, X1z(0) = X2z(0) = 0, and X1X2z(0) = 1/2. These relations
also imply ord0(X1) = ord0(X2) = −1. Finally, the bracket [X1, X2] = ∂z is
of order −2 since [X1, X2]z = 1.

We are now in a position to precise the meaning of first-order approxi-
mation.

Definition. A family of m vector fields X̂1, . . . , X̂m defined near p is called
a first-order approximation of X1, . . . , Xm at p if the vector fields Xi − X̂i,
i = 1, . . . ,m, are of order ≥ 0 at p.

In particular the order at p defined by the vector fields X̂1, . . . , X̂m co-
incides with the one defined by X1, . . . , Xm: for any f ∈ C∞(p) of order
greater than k − 1,

(Xi1 . . . Xisf)(q) = (X̂i1 . . . X̂isf)(q) +O
(
d(p, q)ordp(f)−s+1

)
.

To go further in the characterization of orders and approximations, we
need suitable systems of coordinates.
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3.2 Privileged coordinates

We have introduced in subsection 2.1 the sets of vector fields ∆s, defined as
∆s = span{XI : |I| ≤ s}. Since X1, . . . , Xm satisfy Chow’s Condition, the
values of these sets at p form a flag of subspaces of TpM :

∆1(p) ⊂ ∆2(p) ⊂ · · · ⊂ ∆r−1(p)  ∆r(p) = TpM, (7)

where r = r(p) is called the degree of nonholonomy at p.
Set ni(p) = dim ∆i(p). The integer list (n1(p), . . . , nr(p)) is called the

growth vector at p. The first integer n1(p) is the rank of the family (X1(p), . . . , Xm(p))
and the last one nr(p) = n is the dimension of the manifold M .

Let s ≥ 1. By abuse of notations, we continue to write ∆s for the map
q 7→ ∆s(q). This map ∆s is a distribution if and only if ns(q) is constant on
M . We then distinguish two kind of points.

Definition. The point p is a regular point if the growth vector is constant
in a neighbourhood of p. Otherwise, p is a singular point.

Thus, near a regular point, all maps ∆s are locally distributions.

The structure of the flag (7) may also be described by another sequence
of integers. We define the weights at p, wi = wi(p), i = 1, . . . , n, by setting
wj = s if ns−1(p) < j ≤ ns(p) (we have set n0 = 0). In other terms, we have

w1 = · · · = wn1
= 1, wn1+1 = · · · = wn2

= 2, . . .

wnr−1+1 = · · · = wnr = r.

The weights at p form an increasing sequence w1(p) ≤ · · · ≤ wn(p) which is
constant near p if and only if p is a regular point.

Example 3.2. The Heisenberg case in R3 given in example 3.1 has a growth
vector which is equal to (2, 3) at every point. All points of R3 are then
regular. The weights at any point are w1 = w2 = 1, w3 = 2.

Example 3.3 (Martinet case). Consider the following vector fields on R3:

X1 = ∂x and X2 = ∂y +
x2

2
∂z.

The growth vector is equal to (2, 2, 3) on the plane {y = 0}, and to (2, 3)
elsewhere. As a consequence, the set of singular points is the plane {y = 0}.
The weights are w1 = w2 = 1, w3 = 2 at regular points, and w1 = w2 = 1,
w3 = 3 at singular ones.

13



Example 3.4. Consider the vector fields on R3

X1 = ∂x and X2 = ∂y + f(x)∂z,

where f is a smooth function on R which admits every positive integer n ∈ N
as a zero with multiplicity n (such a function exists and can even be chosen
in the analytic class thanks to the Weierstrass factorization theorem). Every
point (n, y, z) is then singular and the weights at these points are w1 = w2 =
1, w3 = n+1. As a consequence the degree of nonholonomy w3 is unbounded
on R3.

Let us give some basic properties of the growth vector and of the weights.

• At a regular point, the growth vector is a strictly increasing sequence:
n1(p) < · · · < nr(p). Indeed, if ns(q) = ns+1(q) in a neighbourhood
of p, then ∆s is locally an involutive distribution and so s = r. As
a consequence, at a regular point p, the jump between two successive
weights is never greater than 1, wi+1 − wi ≤ 1, and there holds r(p) ≤
n−m+ 1.

• For every s, the map q 7→ ns(q) defines a lower semi-continuous function
from M to N. Therefore the regular points form an open and dense
subset of M .

• For every i = 1, . . . , n, the weight wi(·) is an upper semi-continuous
function. It is in particular the case for the degree of nonholonomy
r(·) = wn(·), that is r(q) ≤ r(p) for q near p. As a consequence r(·) is
bounded on any compact subset of M .

• The degree of nonholonomy may be unbounded on M (see example 3.4
above). Thus the finiteness of a sub-Riemannian distance is a non
decidable problem: the computation of an infinite number of brackets
may be needed to decide if Chow’s Condition is satisfied.

However in the case (important in practice) of polynomial vector fields
on Rn, it can be shown that the degree of nonholonomy is bounded by
a universal function of the degree d of the polynomials (see [Gab95,
GJR98]):

r(x) ≤ 23n2

n2nd2n.

The meaning of the sequence of weights is best understood in terms of
basis of TpM . Choose first vector fields Y1, . . . , Yn1

in ∆1 which values at p
form a basis of ∆1(p). Choose then vector fields Yn1+1, . . . , Yn2

in ∆2 such
that the values Y1(p), . . . , Yn2

(p) form a basis of ∆2(p). For each s, choose

14



Yns−1+1, . . . , Yns in ∆s such that Y1(p), . . . , Yns(p) form a basis of ∆s(p). We
obtain in this way a family of vector fields Y1, . . . , Yn such that

{
Y1(p), . . . , Yn(p) is a basis of TpM,
Yi ∈ ∆wi , i = 1, . . . , n.

(8)

A family of n vector fields satisfying (8) is called an adapted frame at p. The
word “adapted” means “adapted to the flag (7)”, since the values at p of an
adapted frame contain a basis Y1(p), . . . , Yns(p) of each subspace ∆s(p) of the
flag. By continuity, at a point q close enough to p, the values of Y1, . . . , Yn
still form a basis of TqM . However, if p is singular, this basis may be not
adapted to the flag (7) at q.

Let us exhibit now the relation between weights and orders. We write
first the tangent space as a direct sum:

TpM = ∆1(p) ⊕ ∆2(p)/∆1(p) ⊕ · · · ⊕ ∆r(p)/∆r−1(p),

where ∆s(p)/∆s−1(p) denotes a supplementary of ∆s−1(p) in ∆s(p), and take
a local system of coordinates (y1, . . . , yn). The dimension of each space
∆s(p)/∆s−1(p) is equal to ns − ns−1, so we can assume that, up to a re-
ordering, we have dyj(∆

s(p)/∆s−1(p)) 6= 0 for ns−1 < j ≤ ns.
Take an integer j such that 0 < j ≤ n1. From the above assumption,

there holds dyj(∆
1(p)) 6= 0. There exists then Xi such that dyj(Xi(p)) 6= 0.

Since dyj(Xi) = Xiyj is a first-order nonholonomic derivative of yj, we have
ordp(yj) ≤ 1 = wj.

Take now an integer j such that ns−1 < j ≤ ns for s > 1, that is wj = s.
Since dyj(∆

s(p)/∆s−1(p)) 6= 0, there exists a vector field Y in ∆s such that
dyj(Y (p)) = (Y yj)(p) 6= 0. By definition of ∆s, the Lie derivative Y yj is
a linear combination of nonholonomic derivatives of yj of order not greater
than s. One of them must be nonzero and so ordp(yj) ≤ s = wj.

To sum up, for any system of local coordinates (y1, . . . , yn), we have,
up to a reordering, ordp(yj) ≤ wj (or, without reordering,

∑n
i=1 ordp(yi) ≤∑n

i=1wi). The coordinates with the maximal possible order will play an
important role in the sequel.

Definition. A system of privileged coordinates at p is a system of local co-
ordinates (z1, . . . , zn) such that ordp(zj) = wj for j = 1, . . . , n.

Notice that privileged coordinates (z1, . . . , zn) satisfy

dzi(∆
wi(p)) 6= 0, dzi(∆

wi−1(p)) = 0, i = 1, . . . , n, (9)

or, equivalently, ∂zi |p belongs to ∆wi(p) but not to ∆wi−1(p). Local coordi-
nates satisfying (9) are called linearly adapted coordinates (“adapted” because

15



the differentials at p of the coordinates form a basis of T ∗
pM dual to the val-

ues of an adapted frame). Thus privileged coordinates are always linearly
adapted coordinates. The converse is false, as shown in the example below.

Example 3.5. Take X1 = ∂x, X2 = ∂y+(x2+y)∂z in R3. The weights at 0 are
(1, 1, 3) and (x, y, z) are adapted at 0. But they are not privileged: indeed,
the coordinate z is of order 2 at 0 since (X2X2z)(0) = 1.

Remark. As it is proposed by Kupka [Kup96], one can define privileged func-
tions at p as the smooth functions f on U such that

ordp(f) = min{s ∈ N : df(∆s(p)) 6= 0}.

It results from the discussion above that some local coordinates (z1, . . . , zn)
are a system of privileged coordinates at p if and only if each zi is a privileged
function at p.

Let us now show how to compute orders using privileged coordinates.
We fix a system of privileged coordinates (z1, . . . , zn) at p. Given a se-

quence of integers α = (α1, . . . , αn), we define the weighted degree of the
monomial zα = zα1

1 · · · zαn
n as w(α) = w1α1 + · · · + wnαn and the weighted

degree of the monomial vector field zα∂zj as w(α) − wj. The weighted de-
grees allow to compute the orders of functions and vector fields in a purely
algebraic way.

Proposition 3.2. For a smooth function f with a Taylor expansion

f(z) ∼
∑

α

cαz
α,

the order of f is the least weighted degree of a monomial appearing in the
Taylor series with a nonzero coefficient.

For a vector field X with a Taylor expansion

X(z) ∼
∑

α,j

aα,jz
α∂zj ,

the order of X is the least weighted degree of a monomial vector field appear-
ing in the Taylor series with a nonzero coefficient.

In other terms, when using privileged coordinates, the notion of nonholo-
nomic order amounts to the usual notion of vanishing order at some point,
only assigning weights to the variables.
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Proof. For i = 1, . . . , n, we have ∂zi |p ∈ ∆wi(p). We can then find n vector
fields Y1, . . . , Yn which form an adapted frame at p and such that Y1(p) =
∂z1|p, . . . , Yn(p) = ∂zn|p. For each i, the vector field Yi is of order ≥ −wi at
p since it belongs to ∆wi . Moreover we have (Yizi)(p) = 1 and ordp(zi) = wi.
Thus ordp(Yi) = −wi.

Take a sequence of integers α = (α1, . . . , αn). The monomial zα is of
order ≥ w(α) at p and the differential operator Y α = Y α1

1 · · ·Y αn
n is of

order ≥ −w(α). Noticing that (Yizj)(p) = 0 if j 6= i, we prove easily that
(Y αzα)(p) = 1

α1!...αn!
6= 0, which implies ordp(z

α) = w(α).

In the same way, we obtain that, if zα, zβ are two different monomials and
λ, µ two nonzero real numbers, then ordp(λz

α + µzβ) = min
(
w(α), w(β)

)
.

Thus the order of a series is the least weighted degree of monomials actually
appearing in it. This shows the result on order of functions.

As a consequence, for any smooth function f , the order at p of ∂zif is
≥ ordp(f) − wi. Since moreover ∂zizi = 1, we obtain that ordp(∂zi) is equal
to −wi. The result on the order of vector fields follows.

A notion of homogeneity is also naturally associated to privileged coor-
dinates (z1, . . . , zn). We define first a one-parameter group of dilations

δt : (z1, . . . , zn) 7→ (tw1z1, . . . , t
wnzn), t ∈ R.

Each dilation δt is a map from Rn to Rn. For t small enough, it can be
extended to a map from U to U (the privileged coordinates z are assumed
to be defined on the whole U): just define δt(q) as the point in U with
coordinates δt(z(q)), where z(q) are the coordinates of q. A dilation δt acts
also on functions and vector fields by pull-back: δ∗t f = f ◦ δt and δ∗tX is the
vector field such that (δ∗tX)(δ∗t f) = δ∗t (Xf).

Definition. A function f is homogeneous of degree s if δ∗t f = tsf . A vector
field X is homogeneous of degree σ if δ∗tX = tσX.

For a smooth function (resp. for a vector field), this is the same as being
a finite sum of monomials (resp. monomial vector fields) of weighted degree
s. As a consequence, if a function f is homogeneous of degree s, then it is of
order s at p.

A typical degree 1 homogeneous function is the so-called pseudo-norm,
defined as:

z 7→ ‖z‖ = |z1|
1/w1 + · · · + |zn|

1/wn .

When composed with the coordinates function, it is a (non smooth) function
of order 1, that is,

‖z(q)‖ = O
(
d(p, q)

)
.
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Actually, it results from Proposition 3.2 that the order of a function f ∈
C∞(p) is the least integer s such that f(q) = O(‖z(q)‖s).

Examples of privileged coordinates Of course all the results above on
algebraic computation of orders hold only if privileged coordinates do exist.
Two types of privileged coordinates are commonly used in the literature.

a. Exponential coordinates. Choose an adapted frame Y1, . . . , Yn at
p. The inverse of the local diffeomorphism

(z1, . . . , zn) 7→ ez1Y1+···+znYn(p)

defines a system of local privileged coordinates at p, called canonical coordi-
nates of the first kind. These coordinates are mainly used in the context of
hypoelliptic operator and for nilpotent Lie groups with right (or left) invari-
ant sub-Riemannian structure. The fact that these coordinates are privileged
is proved – in different terms – in [RS76].

The inverse of the local diffeomorphism

(z1, . . . , zn) 7→ eznYn ◦ · · · ◦ ez1Y1(p)

also defines privileged coordinates at p, called canonical coordinates of the
second kind. They are easier to work with than the one of the first kind. For
instance, in these coordinates, the vector field Yn read as ∂zn . One can also
exchange the order of the flows in the definition to obtain any of the Yi as
∂zi . The fact that these coordinates are privileged is proved in [Her91] (see
also [Mon02]).

Exercise 1. Prove that the diffeomorphism

(z1, . . . , zn) 7→ eznYn+···+zs+1Ys+1 ◦ ezsYs · · · ◦ ez1Y1(p)

induces privileged coordinates. Show in fact that any “mix” between first
and second kind canonical coordinates are privileged coordinates.

b. Algebraic algorithm. There exist also effective constructions of
privileged coordinates (the construction of exponential coordinates is not
effective in general since it requires to integrate flows). We present here
Belläıche’s algorithm (see also [Ste86, AS87]).

1. Choose an adapted frame Y1, . . . , Yn at p.

2. Choose coordinates (y1, . . . , yn) centered at p such that ∂yi |p = Yi(p).
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3. Build privileged coordinates z1, . . . , zn by the iterative formula: for
j = 1, . . . , n,

zj = yj +

wj−1∑

k=2

hk(y1, . . . , yj−1),

where, for k = 2, . . . , wj − 1,

hk(y1, . . . , yj−1) = −
∑

|α|=k
w(α)<wj

Y α1

1 . . . Y
αj−1

j−1

(
yj+

k−1∑

q=2

hq(y)
)

(p)
yα1

1

α1!
· · ·

y
αj−1

j−1

αj−1!

where |α| = α1 + · · · + αn.

The coordinates y1, . . . , yn are linearly adapted coordinates. Starting from
any system of coordinates, they can be obtained by an affine change of coordi-
nates. Privileged coordinates are obtained from linearly adapted coordinates
by expressions of the form

z1 = y1,

z2 = y2 + pol(y1),
...

zn = yn + pol(y1, . . . , yn−1),

where each pol is a polynomial function without constant nor linear terms.
Note that the inverse change of coordinates is also of triangular form, which
makes the computation easier.

To prove that these coordinates are actually privileged, the key result is
the following lemma.

Lemma 3.3. A function f is of order ≥ s at p if and only if

(Y α1

1 · · ·Y αn
n f)(p) = 0

for all α such that w(α) < s.

Remark. This lemma seems to be an easy consequence of Proposition 3.2
and of its proof. However, in the latter proposition, existence of privileged
coordinates is assumed, whence here the aim is to prove this existence.

Roughly speaking, the idea to obtain zj from yj is the following. For each
α with w(α) < wj (and so αj = · · · = αn = 0), compute (Y α1

1 · · ·Y
αj−1

j−1 yj)(p).

If it is nonzero, then replace yj by yj−(Y α1

1 · · ·Y
αj−1

j−1 yj)(p)
y
α1
1

α1!
· · ·

y
αj−1

j−1

αj−1!
. With

the new value of yj, (Y α1

1 · · ·Y
αj−1

j−1 yj)(p) = 0.

19



3.3 Nilpotent approximation

Fix a system of privileged coordinates at p. We already know that each
vector field Xi is of order ≥ −1. Moreover, for at least one coordinate zj
among z1, . . . , zm, the derivative (Xizj)(p) is nonzero (since dzj(∆

1
p) 6= 0).

This implies that all Xi’s are of order −1.
In z coordinates, Xi has a Taylor expansion

Xi(z) ∼
∑

α,j

aα,jz
α∂zj ,

where w(α) ≥ wj − 1 if aα,j 6= 0. Grouping together the monomial vector
fields of same weighted degree, we express Xi as a series

Xi = X
(−1)
i +X

(0)
i +X

(1)
i + · · ·

where X
(s)
i is a homogeneous vector field of degree s.

Proposition 3.4. Set X̂i = X
(−1)
i , i = 1, . . . ,m. The family of vector fields

X̂1, . . . , X̂m is a first-order approximation of X1, . . . , Xm at p and generate
a nilpotent Lie algebra of step r = wn.

Proof. The fact that the vector fields X̂1, . . . , X̂m form a first-order approx-
imation of X1, . . . , Xm results from their construction.

Note further that any homogeneous vector field of degree smaller than
−wn is zero (clear in privileged coordinates). Moreover, if X and Y are
homogeneous of degree respectively k and l, then the bracket [X, Y ] is ho-
mogeneous of degree k + l because δ∗t [X, Y ] = [δ∗tX, δ

∗
t Y ] = tk+l[X, Y ].

Hence, every iterated bracket of the vector fields X̂1, . . . , X̂m of length k
(that is, containing k of these vector field) is homogeneous of degree −k and
is zero if k > wn.

Definition. The family (X̂1, . . . , X̂m) is called the (homogeneous) nilpotent
approximation of (X1, . . . , Xm) at p associated to the coordinates z.

Example 3.6. Consider X1 = cos θ∂x + sin θ∂y, X2 = ∂θ in R3 (these vector
fields define the kinematic model of a simplified car). At p = 0, the coor-
dinates (x, θ) have order 1 and y has order 2. Since the weights at p are
(1, 1, 2) (just compute the bracket [X1, X2]), (x, θ, y) is a system of privileged
coordinates at 0. Taking the Taylor expansion of X1 and X2 in the latter
coordinates, we obtain as homogeneous components:

X
(−1)
1 = ∂x + θ∂y, X

(0)
1 = 0, X

(1)
1 = −

θ2

2
∂x −

θ3

3!
∂y, . . .

20



and X
(−1)
2 = X2 = ∂θ. Thus the homogeneous nilpotent approximation of

(X1, X2) at 0 in coordinates (x, θ, y) is:

X̂1 = ∂x + θ∂y, X̂2 = ∂θ.

We check easily that the Lie brackets of length 3 of these vectors are zero:
[X̂1, [X̂1, X̂2]] = [X̂2, [X̂1, X̂2]] = 0, so the Lie algebra Lie{X̂1, X̂2} is nilpotent
of step 2.

The homogeneous nilpotent approximation is not intrinsic to the frame
(X1, . . . , Xm), it depends on the chosen system of privileged coordinates.

However, if X̂1, . . . , X̂m and X̂ ′
1, . . . , X̂

′
m are the nilpotent approximations

associated to two different systems of coordinates, then their Lie algebras
Lie(X̂1, . . . , X̂m) and Lie(X̂ ′

1, . . . , X̂
′
m) are isomorphic. If moreover p is a

regular point, then Lie(X̂1, . . . , X̂m) is isomorphic to the graded nilpotent
Lie algebra

Gr(∆)p = ∆(p) ⊕ (∆2/∆1)(p) ⊕ · · · ⊕ (∆r−1/∆r)(p).

Remark. The nilpotent approximation denotes in fact two different objects.
Each X̂i can be seen as a vector field on Rn or as the representation in z
coordinates of the vector field z∗X̂i defined on a neighbourhood of p in M .
It will cause no confusion since the nilpotent approximation is associated to
a given system of privileged coordinates.

It is worth to notice the particular form of the nilpotent approximation
in privileged coordinates. Indeed, write X̂i =

∑n
j=1 fij(z)∂zj . Since X̂i is

homogeneous of degree −1 and ∂zj of degree −wj, the function fij is a ho-
mogeneous polynomial of weighted degree wj − 1. In particular it can not
involve variables of weight greater than wj − 1, that is,

X̂i(z) =
n∑

j=1

fij(z1, . . . , znwj−1)∂zj .

The nonholonomic control system ż =
∑m

i=1 uiX̂i(z) associated to the nilpo-
tent approximation is then polynomial and in a triangular form:

żj =
m∑

i=1

uifij(z1, . . . , znwj−1).

Such a form is “easy” to integrate: given the input function (u1(t), . . . , um(t)),
it is possible to compute the coordinates zj one after the other, only by
computing primitives.

As vector fields on Rn, X̂1, . . . , X̂m generate a sub-Riemannian distance
on Rn which is homogeneous with respect to the dilation δt.
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Lemma 3.5.

(i) The family (X̂1, . . . , X̂m) satisfies Chow’s Condition on Rn.

(ii) The growth vector of (X̂1, . . . , X̂m) at 0 is equal to the one of (X1, . . . , Xm)
at p.

Denote by d̂ the sub-Riemannian distance on Rn associated to (X̂1, . . . , X̂m).

(iii) The distance d̂ is homogeneous of degree 1:

d̂(δtx, δty) = td̂(x, y).

(iv) There exists a constant C > 0 such that, for all z ∈ Rn,

1

C
‖z‖ ≤ d̂(0, z) ≤ C‖z‖.

Proof. Through the coordinates z we identify the neighbourhood U of p in
M with a neighbourhood of 0 in Rn.

For an iterated bracket XI = [Xik , . . . , [Xi2 , Xi1 ]] of the vector fields

X1, . . . , Xm, we denote by X̂I = [X̂ik , . . . , [X̂i2 , X̂i1 ]] the corresponding bracket

of the vector fields X̂1, . . . , X̂m, and for k ≥ 1 we set ∆̂k = span{X̂I : |I| ≤

k}. As noticed in the proof of Proposition 3.4, a bracket X̂I of length |I| = k
is homogeneous of weighted degree −k, and by construction of the nilpotent
approximation, there holds XI = X̂I+ terms of order > −k. It implies

X̂I(0) = XI(p) mod span{∂zj
∣∣
p

: wj < k} = XI(p) mod ∆k−1(p).

As a consequence, for any integer k ≥ 1, we have

dim ∆̂k(0) = dim ∆k(p). (10)

Moreover, ifXI1 , . . . , XIn form an adapted frame at p, then rank(X̂I1 , . . . , X̂In)(0) =

n, which implies that the determinant of (X̂I1(0), . . . , X̂In(0)) is nonzero.
Since this determinant is an homogeneous polynomial of weighted degree 0,
it is nonzero everywhere, and then rank(Ŷ1, . . . , Ŷn) = n on the whole Rn,
which gives (i). Property (ii) then results from (10).

As for the property (iii), consider the nonholonomic system ż =
∑m

i=1 uiX̂i(z).
Observe that, if γ̂ is a trajectory of this system, that is if

˙̂γ(t) =
m∑

i=1

uiX̂i

(
γ̂(t)

)
, t ∈ [0, T ],
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then the dilated curve δλγ̂ satisfies

d

dt
δλγ̂(t) =

m∑

i=1

λuiX̂i

(
δλγ̂(t)

)
, t ∈ [0, T ].

Thus δλγ̂ is a trajectory of the same system, with extremities (δλγ̂)(0) =
δλ(γ̂(0)) and (δλγ̂)(T ) = δλ(γ̂(T )), and its length equals λlength(γ̂). This

proves the homogeneity of d̂.
Finally, since (X̂1, . . . , X̂m) satisfies Chow’s Condition, the distance d̂(0, ·)

is continuous on Rn (see Corollary 2.4). We can then choose a real number

C > 0 such that, on the compact set {‖z‖ = 1}, we have 1/C ≤ d̂(0, z) ≤ C.

Both functions d̂(0, z) and ‖z‖ being homogeneous of degree 1, the inequality
of Property (iv) follows.

3.4 Distance estimates

As it is the case for Riemannian distances, it is impossible – except in very
specific cases – to compute analytically a sub-Riemannian distance (it would
require to determine all minimizing curves). It is then very important to
obtain estimates of the distance, at least locally. In a Riemannian manifold
(M, g), the situation is rather simple: in local coordinates x centered at a
point p, the Riemannian distance dR satisfies:

dR(q, q′) = ‖x(q) − x(q′)‖gp + o(‖x(q)‖gp + ‖x(q′)‖gp),

where ‖ · ‖g(p) is the Euclidean norm induced by the value gp of the metric g
at p. This formula has two consequences: first, it shows that the Riemannian
distance behaves at the first-order as the Euclidean distance associated to
‖ · ‖g(p); secondly, the norm ‖ · ‖g(p) gives explicit estimates of dR near p, such
as:

1

C
‖x(q)‖gp ≤ dR(p, q) ≤ C‖x(q)‖gp .

In sub-Riemannian geometry, two such properties hold, but do not depend
on the same function: the first-order behaviour near p is characterized by the
distance d̂p of a nilpotent approximation at p, whence explicit local estimates
of d(p, ·) are given by the pseudo-norm ‖ · ‖p, as stated below.

Theorem 3.6. The following statement holds if and only if z1, . . . , zn are
privileged coordinates at p:

there exist constants Cp and εp > 0 such that, if d(p, qz) < εp, then

1

Cp
‖z‖ ≤ d(p, qz) ≤ Cp‖z‖ (11)
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(as usual, qz denotes the point near p with coordinates z).

Corollary 3.7 (Ball-Box Theorem). Expressed in a given system of privi-
leged coordinates, the sub-Riemannian balls B(p, ε) satisfy, for ε < εp,

Box
( 1

Cp
ε
)
⊂ B(p, ε) ⊂ Box

(
Cpε

)
,

where Box(ε) = [−εw1 , εw1 ] × · · · × [−εwn , εwn ].

Remark. The constants Cp and εp depend on the base point p. Around a
regular point p0, it is possible to construct systems of privileged coordinates
depending continuously on the base point p. In this case, the corresponding
constants Cp and εp depend continuously on p. This is not true at a singular
point. In particular, if p0 is singular, the estimate (11) does not hold uni-
formly near p0: we can not choose the constants Cp and εp independently on
p near p0 (see section 4.2 for uniform versions of Ball-Box Theorem).

Ball-Box Theorem is stated in different papers, often under the hypoth-
esis that the point p is regular. As far as I know, two valid proofs exist:
in [NSW85] and in [Bel96]. The result also appears without proof in [Gro96]
and in [Ger84], and with erroneous proofs in [Mit85] and in [Mon02].

We present here a proof adapted from the one of Belläıche (our is much
simpler because Belläıche actually proves a more general result, namely (14)).

Basically, the idea is to compare the distances d and d̂. The main step is
Lemma 3.8 below, which is essential to explain the role of nilpotent approx-
imations in control theory.

Observe first that, by the definition of order, a system of coordinates z is
privileged if and only if d(p, qz) ≥ Cst ‖z‖. What remains to prove is that,
if z are privileged coordinates, then d(p, qz) ≤ Cst ‖z‖.

Fix a point p ∈M , and a system of privileged coordinates at p. Through
these coordinates we identify a neighbourhood of p in M with a neighbour-
hood of 0 in Rn. As in the preceding subsection, we denote by X̂1, . . . , X̂m the
homogeneous nilpotent approximation of X1, . . . , Xm at p (associated to the

given system of privileged coordinates) and by d̂ the induced sub-Riemannian
distance on Rn. Recall also that r = wn denotes the degree of nonholonomy
at p.

Lemma 3.8. There exist constants C and ε > 0 such that, for any x0 ∈ R
n

and any t ∈ R+ with τ = max(‖x0‖, t) < ε, we have

‖x(t) − x̂(t)‖ ≤ Cτt1/r,
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where x(·) and x̂(·) are trajectories of the nonholonomic systems associated

respectively to X1, . . . , Xm and X̂1, . . . , X̂m, starting at the same point x0,
defined by the same control function u(·), and with velocity one (i.e.

∑
i u

2
i ≡

1).

Proof. The first step is to prove that there exists a constant such that ‖x(t)‖
and ‖x̂(t)‖ ≤ Cst τ for small enough τ . Let us do it for x(t), the proof is
exactly the same for x̂(t).

The equation of a trajectory of the control system associated toX1, . . . , Xm

is

ẋj =
m∑

i=1

ui
(
fij(x) + rij(x)

)
, j = 1, . . . , n,

where fij(x) + rij(x) is of order ≤ wj − 1 at 0. Thus there exist a constant
such that, when ‖x‖ is small enough, |fij(x) + rij(x)| ≤ Cst ‖x‖wj−1 for any
j = 1, . . . , n and any i = 1, . . . ,m. Note that, along a trajectory starting at
x0, ‖x‖ is small when τ is. If moreover the trajectory has velocity one, which
is the case here, we obtain:

|ẋj| ≤ Cst ‖x‖wj−1. (12)

To integrate this inequality, choose an integer N such that all N/wj are

even integers and set |||x||| =
(∑n

i=1 x
N/wi

i

)1/N
. The function |||x||| is equiv-

alent to ‖x‖ in the norm sense and is differentiable out of the origin. In-
equality (12) implies d

dt
|||x||| ≤ Cst , and then, by integration,

|||x(t)||| ≤ Cst × t+ |||x(0)||| ≤ Cst × τ.

The pseudo-norms |||x||| and ‖x‖ being equivalent, we obtain, for a trajectory
starting at x0, ‖x(t)‖ ≤ Cst × τ when τ is small enough.

The second step is to prove |xj(t)−x̂j(t)| ≤ Cst τwj t. The function xj−x̂j
satisfies the differential equation

ẋj − ˙̂xj =
m∑

i=1

ui
(
fij(x) − fij(x̂) + rij(x)

)
,

=
m∑

i=1

ui
( ∑

{k :wk<wj}

(xk − x̂k)Qijk(x, x̂) + rij(x)
)
,

where Qijk(x, x̂) is a homogeneous polynomial of weighted degree wj−wk−1.
For ‖x‖ and ‖x̂‖ small enough, we have

|rij(x)| ≤ Cst ‖x‖wj and |Qijk(x, x̂)| ≤ Cst (‖x‖ + ‖x̂‖)wj−wk−1.
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By using the inequalities of the first step, we obtain finally, for τ small
enough,

|ẋj(t) − ˙̂xj(t)| ≤ Cst
∑

{k :wk<wj}

|xk(t) − x̂k(t)|τ
wj−wk−1 + Cst τwj . (13)

This system of inequalities has a triangular form, it can be integrated
iteratively. For wj = 1, the inequality is |ẋj(t) − ˙̂xj(t)| ≤ Cst τ , and so
|xj(t)− x̂j(t)| ≤ Cst τt. By induction, let j > n1 and assume |xk(t)− x̂k(t)| ≤
Cst τwkt for k < j. Inequality (13) implies

|ẋj(t) − ˙̂xj(t)| ≤ Cst τwj−1t+ Cst τwj ≤ Cst τwj ,

and so |xj(t) − x̂j(t)| ≤ Cst τwj t.
Finally,

‖x(t) − x̂(t)‖ ≤ Cst τ(t1/w1 + · · · + t1/wn) ≤ Cst τt1/r,

which completes the proof of the lemma.

Proof of Theorem 3.6. We will show that, for ‖x0‖ small enough,

d(0, x0) ≤ 2d̂(0, x0),

and so d(0, x0) ≤ Cst ‖x0‖ by Lemma 3.5. As noticed earlier, this proves
Theorem 3.6.

Fix x0 ∈ Rn, ‖x0‖ < ε. Let x̂0(t), t ∈ [0, T0], be a minimizing curve for

d̂, having velocity one, and joining x0 to 0. Let x0(t), t ∈ [0, T0], be the
trajectory of the control system associated to X1, . . . , Xm starting at x0 and
defined by the same control function than x̂0(t). Set x1 = x0(T0).

Thus T0 = d̂(0, x0) = length
(
x0(·)

)
. Moreover, by Lemma 3.8,

‖x1‖ = ‖x0(T0) − x̂0(T0)‖ ≤ CτT
1/r
0 ,

where τ = max(‖x0‖, T0). By Lemma 3.5, T0 = d̂(0, x0) satisfies T0 ≥
‖x0‖/C ′, so τ ≤ C ′T0, and

d̂(0, x1) ≤ C ′‖x1‖ ≤ C ′′d̂(0, x0)1+1/r,

with C ′′ = C ′2C.
Choose now x̂1(t), t ∈ [0, T1], a minimizing curve for d̂, having velocity

one, and joining x1 to 0. Let x1(t), t ∈ [0, T1], be the trajectory of the
control system associated to X1, . . . , Xm starting at x1 and defined by the
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same control function than x̂1(t). Set x2 = x1(T1). As previously, we have

length
(
x1(·)

)
= d̂(0, x1) and d̂(0, x2) ≤ C ′′d̂(0, x1)1+1/r.

Iterating this construction, we obtain a sequence x0, x1, x2, . . . of points
such that d̂(0, xk+1) ≤ C ′′d̂(0, xk)1+1/r, and trajectories xk(·) joining xk to

xk+1 of length equal to d̂(0, xk).

By taking ‖x0‖ small enough, we can assume C ′′d̂(0, x0)1/r ≤ 1/2. We

have then d̂(0, x1) ≤ d̂(0, x0)/2, . . . , d̂(0, xk) ≤ d̂(0, x0)/2k, . . . As a conse-
quence, xk tends to 0 as k → +∞, and putting end to end the curves xk(·), we

obtain a trajectory joining x0 to 0 of length d̂(0, x0)+d̂(0, x1)+· · · ≤ 2d̂(0, x0).

This implies d(0, x0) ≤ 2d̂(0, x0), and so the theorem.

3.5 Approximate motion planning

Given a control system (Σ), the motion planning problem is to steer (Σ)
from an initial point to a final point. For nonholonomic systems, the exact
problem is in general unsolvable. However methods exist for particular class
of system, in particular for nilpotent (or nilpotentizable) systems. It is then of
interest to devise approximate motion planning techniques based on nilpotent
approximations. These techniques are Newton type methods, the nilpotent
approximation playing the role of the usual linearization.

Precisely, consider a nonholonomic control system

(Σ) : ẋ =
m∑

i=1

uiXi(x), x ∈ Rn,

and initial and final points a and b in Rn. Denote by X̂1, . . . , X̂m a nilpotent
approximation of X1, . . . , Xm at b. The k-step of an approximate motion
planning algorithm take the following form (xk denotes the state of the sys-
tem, x0 being the initial point a):

1. compute a control law u(t), t ∈ [0, T ], steering the control system

associated to X̂1, . . . , X̂m from xk to b;

2. compute the trajectory x(·) of (Σ) with control law u(·) starting from
xk;

3. set xk+1 = x(T ).

The question is the following: is this algorithm convergent? or, at least,
locally convergent? The answer to the latter question will be positive, but we
need an extra hypothesis on the control law given in point 2 of the algorithm,
namely,
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(H) there exists a constant K such that, if xk and b are close enough, then

∫ T

0

√∑
u2i (t)dt ≤ Kd̂(b, xk).

Note that a control corresponding to a minimizing curve for d̂ satisfies this
condition. Other standards methods using Lie groups (like the one in [LS91])
or based on the triangular form of the homogeneous nilpotent approximation
satisfy also this hypothesis.

We can also assume without restriction that the control is normalized,
that is,

∑m
i=1 u

2
i (t) ≡ 1.

The local convergence is then proved in exactly the same way than Theo-
rem 3.6: from Lemmas 3.8 and 3.5, we have d̂(b, xk+1) ≤ C ′′T 1+1/r, and using
hypothesis (H), we obtain

d̂(b, xk+1) ≤ C ′′K1+1/rd̂(b, xk)
1+1/r.

If a is close enough to b, we have, at each step of the algorithm, d̂(b, xk+1) ≤

d̂(b, xk)/2, which proves the local convergence of the algorithm, that is:
for each point b ∈M , there exists a constant εb > 0 such that, if d(a, b) < εb,
then the approximate motion planning algorithm steering the system from a
to b converges.

To obtain a globally convergent algorithm, a natural idea is to iterate the
locally convergent one. This requires the construction of a finite sequence of
intermediate goals b0 = a, b1, . . . , bN = b such that d(bi−1, bi) < εbi . However
the constant εb depends on b and, as already noticed for Theorem 3.6, it is
not possible to have a uniform nonzero constant near singular points. Thus
this method gives a globally convergent algorithm only when every point is
regular.

4 Tangent structure

Consider a manifold M endowed with a sub-Riemannian distance d on M .
The so-defined metric space (M,d) is called a Carnot-Carathéodory space.
The object of this section is to describe the local structure of this metric
space.

4.1 Metric tangent space

A notion of tangent space can be defined for a general metric space. Indeed,
in describing the tangent space to a manifold, we usually imagine looking
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at smaller and smaller neighbourhoods of a given point, the manifold being
fixed. Equivalently, we can imagine looking at a fixed neighbourhood, but
expanding the manifold. As noticed by Gromov, this idea can be used for
metric spaces.

If X is a metric space with distance d, we define λX, for λ > 0, as the
metric space with same underlying set than X and distance λd. A pointed
metric space (X, x) is a metric space with a distinguished point x.

Loosely speaking, a metric tangent space to the metric space X at x is a
pointed metric space (CxX, y) such that

(CxX, y) = lim
λ→+∞

(λX, x).

Of course, for this definition to make sense, we have to define the limit of
pointed metric spaces.

Let us first define the Gromov-Hausdorff distance between metric spaces.
Recall that, in a metric space X, the Hausdorff distance H-dist(A,B) between
two subsets A and B of X is the infimum of ρ such that any point of A is
within a distance ρ of B and any point of B is within a distance ρ of A. The
Gromov-Hausdorff distance GH-dist(X, Y ) between two metric spaces X and
Y is the infimum of Hausdorff distances H-dist(i(X), j(Y)) over all metric
spaces Z and all isometric embeddings i : X → Z, j : Y → Z.

Thanks to Gromov-Hausdorff distance, one can define the notion of limit
of a sequence of pointed metric spaces: (Xn, xn) converge to (X, x) if, for any
positive r,

GH-dist
(
BXn(xn, r), B

X(x, r)
)
→ 0 as n→ +∞

where BY(y, r) is considered as a metric space, endowed with the distance of
Y . Note that all pointed metric spaces isometric to (X, x) are also limit of
(Xn, xn). However the limit is unique up to an isometry provided the closed
balls around the distinguished point are compact.

Finally, one says that (Xλ, xλ) converge to (X, x) when λ → ∞ if, for
every sequence λn, (Xλn , xλn) converge to (X, x).

Definition. A pointed metric space (CxX, y) is a metric tangent space to the
metric space X at x if (λX, x) converge to (CxX, y) as λ → +∞. If it exists,
it is unique up to an isometry.

For a Riemannian metric space (M,dR) induced by a Riemannian metric g
on a manifold M , metric tangent spaces at a point p exist and are isometric to
the Euclidean space (TpM, gp), that is, the standard tangent space endowed
with the scalar product defined by the quadratic form gp.

For the Carnot-Carathéodory space (M,d) defined by a sub-Riemannian
manifold, the metric tangent space is given by the nilpotent approximation.
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Theorem 4.1. A Carnot-Carathéodory space (M,d) admits metric tangent
spaces (CpM, y) at every point p ∈M . The space CpM is a Carnot-Carathéodory

space isometric to (Rn, d̂), where d̂ is the sub-Riemannian distance associated
to a homogeneous nilpotent approximation at p.

This theorem is a consequence of a strong version of Theorem 3.6 es-
tablished by Belläıche: there exists C > 0 such that, for q and q′ in a
neighbourhood of p,

|d(q, q′) − d̂(q, q′)| ≤ Cd̂(p, q)d(q, q′)1/r. (14)

Intrinsic characterization (i.e. up to a unique isometry) of the metric
tangent space can be found in [MM00] and [FJ03].

What is the algebraic structure of CpM? Of course it is not a linear space

in general: for instance, d̂ is homogeneous of degree 1 but with respect to
dilations δt and not to the usual Euclidean dilations. We will see that CpM
has a natural structure of group, or at least of quotient of groups.

Denote byGp the group generated by the diffeomorphisms exp(tX̂i) acting

on the left on Rn. Since gp = Lie(X̂1, . . . , X̂m) is a nilpotent Lie algebra,
Gp = exp(gp) is a simply connected group, having gp as its Lie algebra.

This Lie algebra gp splits into homogeneous components

gp = g−1 ⊕ · · · ⊕ g−r,

where g−s is the set of homogeneous vector fields of degree −s, and so gp is a

graded Lie algebra. The first component g−1 = span〈X̂1, . . . , X̂m〉 generates
gp as a Lie algebra. All these properties imply that Gp is a Carnot groups.

Definition. A Carnot group is a simply connected Lie group whose Lie
algebra is graded, nilpotent, and generated by its first component.

Let ξ̂1, . . . , ξ̂m be the elements X̂1, . . . , X̂m of gp viewed as right-invariant
vector fields on Gp, that is

ξ̂(g) =
d

dt

[
exp(tX̂i)g

]∣∣
t=0
.

To (ξ̂1, . . . , ξ̂m) is associated a right-invariant sub-Riemannian metric and a
sub-Riemannian distance dGp on Gp.

The action of Gp on Rn is transitive, since (X̂1, . . . , X̂m) satisfies Chow’s
Condition on Rn: the orbit of 0 under the action of Gp is the whole Rn. The
mapping φp : Gp → Rn, φp(g) = g(0), is then surjective.

Case p regular.
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Proposition 4.2. If p is a regular point, then dimGp = n.

Proof. Let XI1 , . . . , XIn be an adapted frame at p. Due to the regularity of
p, it is also an adapted frame near p, so any bracket XJ can be written as

XJ(z) =
∑

{i : |Ii|≤|J |}

ai(z)XIi(z),

where each ai is a function of order ≥ |Ii| − |J |. By taking the homogeneous
terms of degree −|J | in this expression, we obtain

X̂J(z) =
∑

{i : |Ii|=|J |}

ai(0)X̂Ii(z),

and so X̂J ∈ span〈X̂I1 , . . . , X̂In〉. Thus X̂I1 , . . . , X̂In is a basis of gp, and so
dimGp = n.

If p is regular, the mapping φp is a diffeomorphism. Moreover φp∗ξ̂i = X̂i,

that is φp maps the sub-Riemannian metric associated to (ξ̂1, . . . , ξ̂m) to the

one associated to (X̂1, . . . , X̂m).

Lemma 4.3. When p is a regular point, the metric tangent space CpM and

the Carnot-Carathéodory space (Rn, d̂) are isometric to the Carnot group Gp

endowed with the right-invariant sub-Riemannian distance dGp.

Carnot groups are to sub-Riemannian geometry as Euclidean spaces are
to Riemannian geometry: the internal operation – addition – is replaced by
the law group and the external operation – product by a real number – by
the dilations. Indeed, recall that the dilations δt act on gp as a multiplication
by t−s on g−s; it extends to Gp by the exponential mapping. Notice that,
when Gp is Abelian (i.e. commutative) it has a linear structure and the sub-
Riemannian metric on Gp is a Euclidean metric.

General case.
Without hypothesis on p, Gp may be of dimension greater than n and

when it is the case the map φp is not injective. Denoting by Hp = {g ∈ Gp :
g(0) = 0} the isotropy subgroup of 0, φp induces a diffeomorphism

ψp : Gp/Hp → Rn.

Beware: Gp/Hp is in general only a coset space, not a quotient group.
Observe that Hp is invariant under dilations, since δtg(δtx) = δt(g(x)).

Hence Hp is connected and simply connected, and so Hp = exp(hp), where
hp is the Lie sub-algebra of gp containing the vector fields vanishing at 0:

hp = {Z ∈ gp : Z(0) = 0}.
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As gp, hp is invariant under dilations and splits into homogeneous compo-
nents.

Now, the elements X̂1, . . . , X̂m of gp acts on the left on Gp/Hp = {gHp :
g ∈ Gp} under the denomination ξ1, . . . , ξm:

ξi(g) =
d

dt

[
exp(tX̂i)gHp

]∣∣
t=0
.

These vector fields define a sub-Riemannian metric and a sub-Riemannian
distance d on Gp/Hp. We clearly have ψp∗ξi = X̂i, so ψp maps the sub-

Riemannian metric associated to (ξ1, . . . , ξm) to the one associated to (X̂1, . . . , X̂m).

Theorem 4.4. The metric tangent space CpM and (Rn, d̂) are isometric to
the homogeneous space Gp/Hp endowed with the sub-Riemannian distance d.

4.2 Desingularization and uniform distance estimate

To get rid of singular points, the usual way is to consider a singularity as the
projection of a regular object. The algebraic structure of the metric tangent
space yields a good way of lifting and projecting Carnot-Carathéodory spaces.
We start with nilpotent approximations.

We keep the notations and definitions of the preceding section. At a
singular point p, we have the following diagram:

(Gp, dGp)

π ↓ φpց

(Gp/Hp, d)
ψp

−̃→ (Rn, d̂)

Since the sub-Riemannian metric on Gp is a right-invariant, every point in
the space (Gp, dGp) is regular. We say that the space (Gp, dGp) is a equiregular.

Thus (Rn, d̂) is the projection of an equiregular space.

Recall that ξ̂1, . . . , ξ̂m (resp. ξ1, . . . , ξm) is mapped to X̂1, . . . , X̂m by φp
(resp. ψp). Working in a system of coordinates, we identify Gp/Hp with Rn

and ξi with X̂i. These coordinates x on Rn ≃ Gp/Hp induce coordinates
(x, z) ∈ RN on Gp and we have:

ξ̂i(x, z) = X̂i(x) +
N∑

j=n+1

bij(x, z)∂zj . (15)

Consider a trajectory (x(t), z(t)) in Gp associated to the control u(t), that
is

(ẋ(t), ż(t)) =
m∑

i=1

ui(t)ξ̂i(x, z).
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Then x(t) is a trajectory in Rn with the same length:

length
(
x(·)

)
= length

(
(x, z)(·)

)
=

∫ √∑
u2i (t)dt.

It implies that d̂ can be obtained from the sub-Riemannian distance dGp in
Gp by

d̂(q1, q2) = inf
q̃2 ∈ q2Hp

dGp(q̃1, q̃2), for any q̃1 ∈ q1Hp,

or, equivalently, Bd̂(q1, ε) = φp
(
BdGp (q̃1, ε)

)
.

We will use this idea to desingularize the original space (M,d). Choose
for x privileged coordinates at p, so that

Xi(x) = X̂i(x) +Ri(x) with ordpRi ≥ 0.

Set M̃ = M×RN−n, and in local coordinates (x, z) on M̃ , define vector fields
on a neighbourhood of (p, 0) as

ξ(x, z) = Xi(x) +
N∑

j=n+1

bij(x, z)∂zj ,

with the same functions bij than in (15).

We define in this way a nonholonomic system on an open set Ũ ⊂ M̃ which
nilpotent approximation at (p, 0) is, by construction, given by (ξ̂1, . . . , ξ̂m).
Unfortunately, (p, 0) can be itself a singular point. Indeed, a point can be
singular for a system and regular for the nilpotent approximation taken at
this point.

Example 4.1. Take the vector fields X1 = ∂x1 , X2 = ∂x2 + x1∂x3 + x21∂x4 and
X3 = ∂x5 + x1001 ∂x4 on R5. The origin 0 is a singular point. However the

nilpotent approximation at 0 is X̂1 = X1, X̂2 = X2, X̂3 = ∂x5 , for which 0 is
not singular.

To avoid this difficulty, we take a group bigger than Gp, namely the free
nilpotent group Nr of step r with m generators. It is a Carnot group and its
Lie algebra nr is the free nilpotent Lie algebra of step r with m generators.
The given of m generators α1, . . . , αm of nr define on Nr a right-invariant
sub-Riemannian distance dN .

The group Nr can be thought as a group of diffeomorphisms and so define
a left action on Rn. Denoting by J the isotropy subgroup of 0 for this action,
we obtain that (Rn, d̂) is isometric to Nr/J endowed with the restriction of
the distance dN .
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By the same reasoning as above, we are able to lift locally the vector
fields (X1, . . . , Xm) (∆, g) on M to vector fields on M × Rñ−n, ñ = dimNr,
having α1, . . . , αm for nilpotent approximation at (p, 0). And, because Nr is
free up to step r, this implies that (p, 0) is a regular point for the associ-
ated nonholonomic system in M × Rñ−n. We obtain in this way a result of
desingularization.

Lemma 4.5. Let p be a point in M , r the degree of nonholonomy at p,
ñ = ñ(m, r) the dimension of the free Lie algebra of step r with m generators,

and M̃ the manifold M̃ = M × Rñ−n.
then there exist a neighbourhood Ũ ⊂ M̃ of (p, 0); a neighbourhood U ⊂M

of p with U×{0} ⊂ Ũ ; local coordinates (x, z) on Ũ ; and smooth vector fields

on Ũ :

ξ(x, z) = Xi(x) +
N∑

j=n+1

bij(x, z)∂zj ,

such that:

• ξ1, . . . , ξm satisfy Chow’s Condition and has r for degree of nonholon-
omy everywhere (so its Lie algebra is free up to step r);

• every q̃ in Ũ is regular;

• denoting π : M̃ →M the canonical projection and d̃ the sub-Riemannian
distance defined by ξ1, . . . , ξm on Ũ , we have, for q ∈ U and ε > 0 small
enough,

B(q, ε) = π
(
Bd̃

(
(q, 0), ε

))
,

or, equivalently,

d(q1, q2) = inf
q̃2 ∈π−1(q2)

d̃
(
(q1, 0), q̃2

)
.

Remark. The lemma still holds if we take for r any integer greater than the
degree of nonholonomy at p.

Thus any Carnot-Carathéodory space is locally the projection of an equireg-
ular Carnot-Carathéodory space. This projection preserves the trajectories,
the minimizers, and the distance.
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Application: uniform Ball-Box theorem

The key feature of regular points is the uniformity:

• uniformity of the flag (7);

• uniformity w.r.t. p of the convergence (λ(M,d), p) → CpM (as ex-
plained by Belläıche [Bel96, Sect. 8], this uniformity is responsible for
the group structure of the metric tangent space);

• uniformity of the distance estimates (see Remark page 24).

This last property in particular is essential to compute Hausdorff dimension
or to prove the global convergence of approximate motion planning algo-
rithms. Recall what we mean by uniformity in this context: in a neighbour-
hood of a regular point p0, we can construct privileged coordinates depending
continuously on the base point p and such that the distance estimate (11)
holds with Cp and εp independent of p.

As already noticed, all these uniformity properties are lost at singular
points. However, using the desingularization of the sub-Riemannian mani-
fold, it is possible to give a uniform version of the distance estimates.

Let Ω ⊂ M be a compact set. We denote by rmax the maximum of the
degree of nonholonomy on Ω. We assume that M is an oriented manifold, so
the determinant n-form det is well-defined.

Given q ∈ Ω and ε > 0, we consider the families X = (XI1 , . . . , XIn) of
brackets of length |Ii| ≤ rmax. On the finite set of these families, we define a
function

fq,ε(X ) =
∣∣det

(
XI1(q)ε

|I1|, . . . , XIn(q)ε|In|
)∣∣ .

We say that X is an adapted frame at (q, ε) if it achieves the maximum of
fq,ε.

The values at q of an adapted frame at (q, ε) clearly form a basis of TqM .
Moreover, q being fixed, the adapted frames at (q, ε) are adapted frames at
q for ε small enough.

Theorem 4.6 (Uniform Ball-Box theorem). There exist positive constants
K and ε0 such that, for all q ∈ Ω and ε < ε0, if X is an adapted frame at
(q, ε), then

BoxX (q,
1

K
ε) ⊂ B(q, ε) ⊂ BoxX (q,Kε),

where BoxX (q, ε) = {ex1XI1 ◦ · · · ◦ exnXIn (q) : |xi| ≤ ε|Ii|, 1 ≤ i ≤ n}.

Of course, q being fixed, this estimate is equivalent to the one of Ball-Box
theorem for ε smaller than some ε1(q) > 0. However ε1(q) can be infinitely
close to 0 though the estimate here holds for ε smaller than ε0, which is
independent of q.
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[Gro96] M. Gromov. Carnot-Carathéodory spaces seen from within. In
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baki, volume 817, June 1996.

[LS91] G. Lafferriere and H. Sussmann. Motion planning for controllable
systems without drift. In Proceedings of the 1991 IEEE Inter-
national Conference on Robotics and Automation, Sacramento,
California, 1991.

[Mit85] J. Mitchell. On Carnot-Carathéodory metrics. Journal of Differ-
ential Geom., 21:35–45, 1985.

[MM00] G. A. Margulis and G. D. Mostow. Some remarks on the defini-
tion of tangent cones in a Carnot-Carathéodory space. Journal
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