HAL CCSD
Control of Nonholonomic Systems and Sub-Riemannian Geometry
Jean, Frédéric
Optimisation et commande (OC) ; Unité de Mathématiques Appliquées (UMA) ; École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
International audience
École de recherche CIMPA : Géométrie sous-riemannienne
Beyrouth, Lebanon
hal-00700932
https://confremo.hal.science/hal-00700932
https://confremo.hal.science/hal-00700932v2/document
https://confremo.hal.science/hal-00700932v2/file/CIMPABeyrouth12.Jean2.pdf
https://confremo.hal.science/hal-00700932
École de recherche CIMPA : Géométrie sous-riemannienne, Jan 2012, Beyrouth, Lebanon
en
[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]
info:eu-repo/semantics/conferenceObject
Conference papers
Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their link with the metric tangent structure in sub-Riemannian geometry.
collaboration AUF
2012-01-30
info:eu-repo/semantics/OpenAccess
European Project: 264735,EC:FP7:PEOPLE,FP7-PEOPLE-2010-ITN,SADCO(2011)
info:eu-repo/grantAgreement/EC/FP7/264735/EU/Sensitivity Analysis for Deterministic Controller Design/SADCO